Electric Literature of 37366-09-9. Let¡¯s face it, organic chemistry can seem difficult to learn. Especially from a beginner¡¯s point of view. Like 37366-09-9, Name is Dichloro(benzene)ruthenium(II) dimer. In a document type is Article, introducing its new discovery.
Redox chemistry and electronic properties of 2,3,5,6-tetrakis(2-pyridyl) pyrazine-bridged diruthenium complexes controlled by N.C.N-biscyclometalated ligands
To investigate the consequences of cyclometalation for electronic communication in dinuclear ruthenium complexes, a series of 2,3,5,6-tetrakis(2- pyridyl)pyrazine (tppz) bridged diruthenium complexes was prepared and studied. These complexes have a central tppz ligand bridging via nitrogen-to-ruthenium coordination bonds, while each ruthenium atom also binds either a monoanionic, N, C, N-terdentate 2,6-bis(2-pyridyl)phenyl (R-N-C-N) ligand or a 2,2I:6I, 2II-terpyridine (tpy) ligand. The N, C, NI-, that is, biscyclometalation, instead of the latter N, NI, NII-bonding motif significantly changes the electronic properties of the resulting complexes. Starting from well-known [{Ru(tpy)}2(mu-tppz)]4+ (tpy = 2,2I:2 II, 6-terpyridine) ([3]4+) as a model compound, the complexes [{Ru(R-N-C-N)}(mu-tppz){Ru(tpy)}]3+ (R-N-C(H)-N = 4-R-1,3-dipyridylben-zene, R = H ([4a] 3+), CO2Me ([4b]3+)), and [{Ru(R-N -C-N)}2(mu-tppz)]2+, (R = H ([5a]2+), CO2Me ([5b]2+)) were prepared with one or two N, C, NI-cyclometalated terminal ligands. The oxidation and reduction potentials of cyclometalated [4]3+ and [5]2+ are shifted negatively compared to non-cyclometalated [3]4+, the oxidation processes being affected more significantly. Compared to [3] 4+, the electronic spectra of [5]2+ display large bathochromic shifts of the main MLCT transitions in the visible spectral region with low-energy absorptions tailing down to the NIR region. One-electron oxidation of [3]4+ and [5]2+ gives rise to low-energy absorption bands. The comproportionation constants and NIR band shape correspond to delocalized Robin-Day class III compounds. Complexes [4a]3+ (R = H) and [4b]3+ (R = CO2Me) also exhibit strong electronic communication, and notwithstanding the large redox-asymmetry the visible metal-to-ligand charge-transfer absorption is assigned to originate from both metal centers. The potential of the first, ruthenium-based, reversible oxidation process is strongly negatively shifted. On the contrary, the second oxidation is irreversible and cyclometalated ligand-based. Upon one-electron oxidation, a weak and low-energy absorption arises.
If you are interested in 37366-09-9, you can contact me at any time and look forward to more communication.Electric Literature of 37366-09-9
Reference£º
Highly efficient and robust molecular ruthenium catalysts for water oxidation,
Catalysts | Special Issue : Ruthenium Catalysts – MDPI