New learning discoveries about 918870-76-5

918870-76-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,918870-76-5 ,Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II), other downstream synthetic routes, hurry up and to see

Name is Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 918870-76-5, its synthesis route is as follows.

Example 103 Synthesis of Ru complex 6h The Ru complex (Zhan catalyst 2b, l.Ommol) and a new ligand 5h (1.5mmol) were dissolved in 20 mL of anhydrous DCM and reacted directly to form the desired Ru complex 6h in the preaence of CuCl (3.0mmol) in a 100 mL of three-neck flask filled with inert gas (Ar). The reaction mixture was stirred for 0.5 hr at room temperature. After complete, the reaction solution was filtered and purified by flask column. 378mg of yellow-green solid product 6h was obtained, yield: 52%. Ru complex 6h is confirmed by 1HNMR (400 MHz, CDC13): delta 16.52 (s, 1H, Ru=CH), 8.43 (s, 1H, N=CH), 8.10 (s, 1H), 7.46-7.22 (m, 2H), 7.73-6.96 (m, 8H), 4.19 (s, 4H, NCH2CH2N), 3.95 (s, 3H), 3.87 (s, 3H), 2.49 (s, 12H), 2.48 (s, 6H).

918870-76-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,918870-76-5 ,Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; ZANNAN SCITECH CO., LTD.; ZHAN, James Zheng-Yun; WO2011/79439; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 246047-72-3

The chemical industry reduces the impact on the environment during synthesis,246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,I believe this compound will play a more active role in future production and life.

246047-72-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

To a solution of 6e (33.0 mg, 0.05 mmol) in anhydrous CH2Cl2 (6.0 ml) was added 2ndgeneration Grubbs catalyst (39.7 mg, 0.05 mmol) and CuCl (I) (4.6 mg, 0.05 mmol)under nitrogen at 30 C and stirred for 3 h. The reaction mixture was concentrated invacuo, and the residue was purified by column chromatography on silica gel (hexane /CH2Cl2 = 1 / 1) to give 2i (25.2 mg, 46%).Green crystals; mp 116.3-117.0 C; 1H NMR (270 MHz, CDCl3) delta 0.86 (d, J = 6.2 Hz,6H), 2.50 (br s, 18H), 4.23 (s, 4H), 4.45-4.54 (m, 1H), 7.07-7.12 (m, 6H), 7.26-7.54 (m,3H), 7.62 (d, J = 2.2 Hz, 1H), 7.80-7.87 (m, 4H), 16.51 (s, 1H); 19F (466 MHz, CDCl3)delta -80.6 (3F), 109.6 (2F), -121.1 (4F), -121.7 (4F), -122.5 (2F), -125.9 (2F); 13C NMR(68 MHz, CDCl3) delta 15.3, 22.1, 22.7, 66.0, 77.3, 110.3-119.9 (m, C8F17), 123.9, 124.3,124.7, 126.4, 127.3, 127.7, 127.9, 128.2, 129.1, 131.7, 132.8, 133.5, 133.7, 135.8, 136.3,155.8; IR (FT) 2919, 2360, 1605, 1481, 1398, 1242, 1207, 1145, 1109, 1094, 743 cm-1;HRMS (FAB) m/z [M+H]+ calcd for C49H44Cl2F17N2ORu 1172.1689; found 1172.1731.

The chemical industry reduces the impact on the environment during synthesis,246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,I believe this compound will play a more active role in future production and life.

Reference£º
Article; Kobayashi, Yuki; Suzumura, Naoki; Tsuchiya, Yuki; Goto, Machiko; Sugiyama, Yuya; Shioiri, Takayuki; Matsugi, Masato; Synthesis; vol. 49; 8; (2017); p. 1796 – 1807;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 15529-49-4

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the ruthenium-catalysts compound, Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4 its synthesis route is as follows.

2-Chloro-benzoic acid (55mg, 0.35mmol) in dry THF was treated with triethylamine (0.20mL) and the mixture was stirred at ambient temperature for 1h. [RuCl2(PPh3)3] (335mg, 0.35mmol) was added and the reaction mixture was stirred overnight at room temperature, during which there was a color change from brown to deep green. The solvent was removed under reduced pressure. The residue was washed with diethyl ether and hexane. Recrystallization from CH2Cl2/Et2O afforded deep green crystals of 2 in five days. Yield: 206mg, 69% (based on Ru). IR (KBr disc, cm-1): nu(OCO) 1511 (s) and 1468 (s). MS (FAB): m/z=852 [M]+, 817 [M-Cl]+, 782 [M-2Cl]+. mueff=1.96muB. Anal. for C40H35O2Cl2P2Ru: calcd. C 60.61, H 4.22%; found C 60.47, H 4.16%.

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Gu, Jiling; Shi, Li-Miao; Ma, Xiu-Fang; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 466; (2017); p. 382 – 388;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 50982-12-2

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

Name is Dichloro(cycloocta-1,5-diene)ruthenium(II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 50982-12-2, its synthesis route is as follows.

General procedure: The following common procedure was followed for the synthesesof complexes 1-5: A mixture of the ligand (0.36 mmol) and Ru(1,5-cod)Cl2(0.36 mmol) was dissolved in dry ethanol (10 ml) and the resultingmixture was refluxed for 2 h. The reaction volume was concentratedto a third of its original volume and the suspension was keptat 4 C overnight to give brick red solid which was filtered off,washed with cold ethanol and then diethyl ether. The solid wasdissolved in chloroform and excess of n-hexane was added toinduce the precipitation of the brick red solid product.

50982-12-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,50982-12-2 ,Dichloro(cycloocta-1,5-diene)ruthenium(II), other downstream synthetic routes, hurry up and to see

Reference£º
Article; Thangavel, Saravanan; Rajamanikandan, Ramar; Friedrich, Holger B.; Ilanchelian, Malaichamy; Omondi, Bernard; Polyhedron; vol. 107; (2016); p. 124 – 135;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

246047-72-3, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, 246047-72-3

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 246047-72-3

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the ruthenium-catalysts compound, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3 its synthesis route is as follows.

To a solution of 9 (59.7 mg, 0.098 mmol) in anhydrous CH2Cl2 (6.0 ml) was added 2ndgeneration Grubbs catalyst (75.3 mg, 0.088 mmol) and CuCl (I) (19.8 mg, 0.20 mmol)under nitrogen at 30 C and stirred for 3 h. The reaction mixture was concentrated invacuo, and the residue was purified by column chromatography on silica gel (hexane /CH2Cl2 = 1 / 1) to give 2j (43.2 mg, 41%).Green crystals; mp 153-157 C; 1H NMR (270 MHz, CDCl3) delta 2.38 (s, 6H), 2.45 (s,12H), 4.21 (s, 1H), 4.90-4.82 (m, 1H), 6.62 (d, J = 12.4 Hz, 1H), 7.07 (s, 5H), 16.22 (s,1H); 19F NMR (466 MHz, CDCl3) delta -80.6 (3F), -106.3 (1F), -108.5 (2F), -121.4 (2F),-121.5 (2F), -122.6 (4F), -125.9 (2F); 13C NMR (68 MHz, CDCl3) delta 19.4, 20.9, 51.4,77.5, 102.8, 103.2, 122.3, 129.4, 139.1, 141.8, 155.8, 155.9, 158.3, 162.1, 209.2, 291.7;IR (FT) 3905, 3857, 3747, 3642, 3569, 2971, 2918, 2363, 2342, 1837, 1723, 1691, 1612,1586, 1486, 1424, 1293, 1213, 1156, 1104, 1029, 915, 846 cm-1; HRMS (FAB) m/z[M+H]+ calcd for C39H37Cl2F18N2ORu 1064.1039; found 1064.1049.

246047-72-3, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,246047-72-3 ,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Kobayashi, Yuki; Suzumura, Naoki; Tsuchiya, Yuki; Goto, Machiko; Sugiyama, Yuya; Shioiri, Takayuki; Matsugi, Masato; Synthesis; vol. 49; 8; (2017); p. 1796 – 1807;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of Ruthenium(III) chloride

As the paragraph descriping shows that 10049-08-8 is playing an increasingly important role.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product.10049-08-8, name is Ruthenium(III) chloride An updated downstream synthesis route of 10049-08-8 as follows., 10049-08-8

Example 13 Synthesis of (3S)-3-(1,3-benzodioxol-5-yl)-3-[({1-[2-oxo-3-(phenylmethyl)-1(2H)-pyridinyl]cyclohexyl}carbonyl)amino]propanoic Acid Step One: To a solution of 3-benzylpyridine (1.65 g, 9.77 mmol) in acetone (3.5 mL), 1-chloro-2,4-dinitrobenzene (2.00 g, 9.56 mmol) was added and the mixture was refluxed overnight. The mixture was cooled to room temperature, diluted with acetone and the solvent was decanted from the precipitate. The crude solid was washed with acetone (2 times) and diethyl ether (1 time), decanting each time to give 37(3.57 g, 100percent) as a gray solid. Step Two: To a solution of 1-amino-1-hydroxymethylcyclohexane (0.45 g, 3.5 mmol) in n-butanol (8.75 mL), solid N-(2,4-dintrophenyl)-3-benzylpyridinum chloride (37, 1.23 g, 3.3 mmol) was added. The resulting solution was heated to reflux for 2.5 days under a nitrogen atmosphere. The mixture was cooled, diluted with water and filtered. The filtrate was basified with concentrated NH4OH (2 mL) and extracted with ethyl acetate. The aqueous layer was concentrated to dryness to give 38(0.56 g) as a yellow oil which was used without further purification. Step Three: To a solution of crude 38(0.56 g, 3.5 mmol theoretical) in water (10 mL), a solution of potassium ferricyanide (3.3 g, 10 mmol) in water (15 mL) was added dropwise via an addition funnel over 30 minutes at 0¡ã C. A solution of KOH (0.76 g, 13.5 mmol) in water (5 mL) was then added over 30 minutes. Toluene (10 mL) was added and the solution was stirred for one hour at 0¡ã C. The layers were separated, and the aqueous layer was extracted again with toluene. The combined extracts were dried over Na2SO4 and filtered and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel, eluding with 7:13 hexanes:ethyl acetate to give 39(20 mg, 1.9percent, two steps.) Step Four: To a suspension of 39(20 mg, 0.068 mmol) in aqueous KOH (1M, 0.70 mL) potassium persulfate (0.073 g, 0.270 mmol) and ruthenium (III) chloride (1 mg, catalytic) and THF (0.25 mL) were added. The mixture was stirred for 1 hour and extracted with dichloromethane. The aqueous layer was acidified and extracted with ethyl acetate (3 times). The ethyl acetate extracts were combined, dried over MgSO4 and filtered. The filtrate was concentrated under reduced pressure to give 40(0.0148 g, 70percent) as a tan solid. (3S)-3-(1,3-Benzodioxol-5-yl)-3-[({1-[2-oxo-3-(phenylmethyl)-1(2H)-pyridinyl]cyclohexyl}carbonyl)amino]propanoic acid was prepared from 40according to the procedures described in Example 1. 1H NMR (400 MHz, CD3SO2CD3): delta 1.40 (m, 4H), 1.68 (m, 2H), 2.04 (m, 2H), 2.60 (d, J=7.0 Hz, 2H), 3.67 (d, J=15.2 Hz, 1H), 3.72 (d, J=15.2 Hz, 1H), 5.12 (m, 1H), 5.95 (m, 2H), 6.19 (t, J=7.0 Hz, 1H), 6.74 (dd, J=7.8, 1.4 Hz, 1H), 6.76 (d, J=7.8 Hz, 1H), 6.90 (d, J=1.4 Hz, 1H), 7.10 (d, J=5.8 Hz, 1H), 7.20 (m, 5H), 7.57 (d, J=8.4Hz, 1H), 7.66 (dd, J=7.7, 1.8 Hz, 1H).

As the paragraph descriping shows that 10049-08-8 is playing an increasingly important role.

Reference£º
Patent; Biediger, Ronald J.; Dupre, Brian; Hamaker, Linda K.; Holland, George W.; Kassir, Jamal M.; Li, Wen; Market, Robert V.; Nguyen, Noel; Scott, Ian L.; Wu, Chengde; Decker, E. Radford; US2003/199692; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, As we all know, there are many different methods for the synthesis of a compound, and people can choose the synthesis method that suits their own laboratory according to the actual situation. 15529-49-4, name is Dichlorotris(triphenylphosphino)ruthenium (II) This compound is widely used in many fields, so it is necessary to find a new synthetic route. The downstream synthesis method of this compound is introduced below.

A solution of RuCl2(PPh3)3 (0.200g; 0.21mmol) and ligand 1 (0.135g; 0.42mmol) in benzene (5mL) was stirred at 60C for 2h under the nitrogen atmosphere. Yellow crystals formed. The precipitate was filtered, washed with a small portion of hexane and dried. (0.154g; 90%). 1H NMR (400MHz, CD2Cl2): delta=11.45 (s, 2H, NH), 7.71-7.60 (m, J=11.6, 7.9Hz, 4H, Ph), 7.60-7.51 (m, J=7.6Hz, 2H, Ph), 7.52-7.43 (m, J=6.5Hz, 4H, Ph), 7.39-7.33 (m, 8H, ArH and CH), 7.34-7.26 (m, 4H, Ph), 7.26-7.17 (m, J=7.3Hz, 4H, Ph), 7.03-6.92 (m, J=5.4Hz, 6H, Ph), 6.81-6.70 (m, J=7.3Hz, 4H, Ph), 6.40-6.28 (m, J=8.7Hz, 6H, Ph), 3.77-3.61 (m, 2H, CH2), 3.45-3.31 (m, 2H, CH2), 1.46 (s, 18H, CH3); 13C NMR was not obtained due to the low solubility of this complex; 31P NMR (162MHz, CDCl3): delta=67.9 (s, 2P, ligand 1) ppm; C40H46Cl2N4P2Ru: calcd. C 58.82, H 5.68, N 6.86; found C 58.91, H 5.86, N 6.46.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Alshakova, Iryna D.; Korobkov, Ilya; Kuzmina, Lyudmila G.; Nikonov, Georgii I.; Journal of Organometallic Chemistry; vol. 853; (2017); p. 68 – 73;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

246047-72-3, Adding a certain compound to certain chemical reactions, such as: 246047-72-3, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 246047-72-3

To a solution of 1-isopropoxy-4-(perfluorodecyl)-2-vinylbenzene (35.5mg, 0.052mmol) in dry CH2Cl2 (4 mL) was added Grubbs 2nd generation (48.75 mg, 0.057 mmol) and CuCl (I) (8.2 mg, 0.083 mmol) under N2 at 35C and stirred for 3 h. The reaction mixture was concentrated in vacuo, and the residue was purified by column chromatography on silica gel (hexane / CH2Cl2 = 1 / 1) to give 1a (39.5mg, 65%).

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Article; Kobayashi, Yuki; Inukai, Sae; Kondo, Natsuki; Watanabe, Tomoko; Sugiyama, Yuya; Hamamoto, Hiromi; Shioiri, Takayuki; Matsugi, Masato; Tetrahedron Letters; vol. 56; 11; (2015); p. 1363 – 1366;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Dichlorotris(triphenylphosphino)ruthenium (II)

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glove box, [RuCl2(PPh3)3] (0.25 mmol) was added to a schlenk flask equipped with a magnetic stir bar. The flask was then attached to a schlenk line and 3.4 mL of freshly distilled toluene added. The mixture was then rapidly stirred. A 1.7 mL toluene solution of Ph2PCH2CH2NH2, (0.50 mmol) in an NMR tube was then added via a cannula. Any residue in the NMR tube and cannula was washed into the flask with 1.7 mL of toluene. The light yellow mixture was then heated at 100 C. for 6 h. The yellow suspension that resulted was allowed to cool to RT before collecting the precipitate by filtration under Argon. The precipitate was then washed with 10.0 mL portions of toluene, three times (until colorless). The yellow solid was then dried in vacuo. Yield: 90%. Note: Excessive scraping of the product should be minimised to prevent the build-up of static electricity, 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE GOVERNORS OF THE UNIVERSITY OF ALBERTA; Bergens, Steven; John, Jeremy M.; US2014/163225; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI