Some tips on 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-dicyclohexylphosphine aniline,1.2 mmol of p-chlorobenzyl alcohol, 1 mmol of 1,1′-diphenylphosphinoferrocene, 1 mmol of RuCl2 (PPh3) 3, 1.2 mmol of triethylamine and 20 ml of toluene at a temperature of 110 C. and heated under a nitrogen atmosphere for 24 hAfter cooling and filtration, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 20 in a yield of 86%.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO397,mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

After a 50 mL two-necked flask was purged with argon, the ligand 7k (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were successively added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After completion of the reaction, silica gel was added to the filtrate after filtration, and the crude product was obtained by silica gel column chromatography, and then washed with methanol or pentane-DCM to obtain a green solid product 8k in a yield of 77%.

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-(i-propyl)-1-phenylprop-2-yn-1-ol (compound 18A, 1.5 eq., 0.144 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.48 g (Yield: 93%). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 629.55.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 246047-72-3

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, and cas is 246047-72-3, its synthesis route is as follows.,246047-72-3

General procedure: The product was synthesized using in-situ generated Grubbs-Hoeyda 2nd generation catalyst.Therefore Grubbs 2nd generation catalyst (0.1 mmol, 0.02 equiv.) was dissolved in drydichloromethane (5 mL), 1-Isopropoxy-2-vinylbenzene (0.1 mmol, 0.02 equiv.) and copper(I)chloride(0.1 mmol, 0.02 equiv.) were added and the reaction mixture was stirred at reflux for 45 min until thecolour turned green. After cooling to room temperature VCP XX (5 mmol, 1 equiv.) and methylacrylate (30 mmol, 6 equiv.) were added and the reaction mixture was stirred at reflux for 16 h, afterwhich additional methyl acrylate (10 mmol, 2 equiv.) was added and stirred for another 7 h at reflux.The product was obtained via column chromatography on silica gel (5:1 petroleum ether/ethylacetate) as a white powder

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Article; Pursley, Dominik; Plietker, Bernd; Synlett; vol. 25; 16; (2014); p. 2316 – 2318;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO92,mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline,1.5 mmol of m-ethoxybenzyl alcohol, 1 mmol of bis (diphenylphosphinoethane), 1 mmol of RuCl2 (PPh3) 3, 1.5 mmol of sodium hydroxide and 20 ml of benzene at a temperature of 100 C for 24 h under a nitrogen atmosphere,After cooling and filtering, the obtained solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 4 in a yield of 86%.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 246047-72-3

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a Schlenk flask charged with Grubbs? catalyst 2 (0.42g, 0.50mmol) and CuCl (0.05g, 0.50mmol), compound 9 (0.6mmol) in 10mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40min at 40C. After being cooled to room temperature, the reaction mixture was filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2: ethyl acetate=2:1 or pentanes: ethyl acetate=3:2 or1:1) to give the desired product as a green crystalline solid. Yield: 65.7%. Anal. Calc. for C34H43Cl2N3O2Ru: C, 58.53; H, 6.21; N, 6.02. Found: C, 58.45; H, 6.21; N, 5.95%. 1H NMR (400MHz, CDCl3) delta (ppm): 1.41 (d, J=6.3Hz, 3H), 2.38 (s, 3H), 2.40 (bs, 6H), 2.52 (bs, 12H), 2.77 (s, 3H), 2.79 (s, 3H), 4.10 (s, 4H), 5.23 (q, J=6.6, 1H), 6.54 (d, J=8.3Hz, 1H), 6.75 (s, 4H), 7.08 (s, 4H), 7.28 (d, J=8.4Hz, 1H), 16.37 (s, 1H). 13C NMR (100MHz, CDCl3) delta: 16.7, 21.4, 27.3, 36.2, 37.0, 51.9, 62.2, 73.4, 112.3, 129.4, 129.3, 129.6, 133.2, 138.3, 145.9, 149.4, 171.4, 210.5, 302.1ppm. IR (KBr) v: 3033, 2912, 2845, 2735, 1946, 1628, 1475, 1445, 1415, 1233, 1217, 1129, 1103, 853, 571cm-1.

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Liu, Guiyan; Shao, Mingbo; Zhang, Huizhu; Wang, Jianhui; Polyhedron; vol. 76; (2014); p. 51 – 54;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 246047-72-3

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 246047-72-3, its synthesis route is as follows.,246047-72-3

Synthesis and characterization of [(IMesH2)(PCy3)(Cl)2Ru?CF2]: A solution of 0.32 g (0.37 mmol) [(IMesH2)(PCy3)(Cl)2Ru?CHPh] (5) in dry, degassed benzene (15 mL) in a thick-walled glass ampule was put under 1.5 atm of 1,1-difluoroethylene. The reaction was heated at 60 C. for 12 hrs, during which time it changed from reddish to brown in color. The solution was then concentrated to 5 mL and purified by column chromatography in air (silica gel, 5:1 pentane/THF). The orange fraction was stripped of solvent and dried under vacuum: yield 0.26 g (86%). 1H NMR (499.852 MHz, 25 C., CD2Cl2): delta 1.118 [br, 15H, PCy3], 1.626 [br, 15H, PCy3], 2.248 [s, 3H, p-CH3 of Mes], 2.285 [s, 3H, p-CH3 of Mes], 2.385 [m, 3H, PCy3], 2.480 [s, 6H, o-CH3 of Mes], 2.551 [s, 6H, o-CH3 of Mes], 4.003 [s, 4H, NCH2CH2N], 6.921 [s, 4H, m-H of Mes]. 13C {1H} NMR (125.705 MHz, 30 C., C6D6): delta 19.44 [s, CH3 of Mes], 20.65 [s, CH3 of Mes], 21.49 [s, CH3 of Mes], 21.50 [s, CH3 of Mes], 26.92 [d, J=1.3 Hz, PCy3], 28.50 [d, J=10 Hz, PCy3], 30.14 [s, PCy3], 33.34 [d, J=18 Hz, PCy3], 51.86 [d, 4 JPC=2.6 Hz, NCH2CH2N], 52.61 [d, 4JPC=3.5 Hz, NCH2CH2N], 127.30 [s, Mes], 128.17 [s, Mes], 129.26 [s, Mes], 129.51 [s, Mes], 130.11 [s, Mes], 130.52 [s, Mes], 134.68 [d, 4 JPC=0.7 Hz, ipso-C of Mes], 136.85 [s, ipso-C of Mes], 138.91 [s, Mes], 138.93 [s, Mes], 139.03 [s, Mes], 139.67 [s, Mes], 217.23 [d, 2JCP=87 Hz, NCN], 218.09 [td, 2JCP=12 Hz, 1 JCF=430 Hz, Ru?CF2]. 19F NMR (282.192 MHz, 25 C., CD2Cl2): delta 133.74 [d, 3JFP=4.5 Hz]. 31P {1H} NMR (121.392 MHz, 25 C., CD2Cl2): delta 32.15 (t, 3 JPF=4.4 Hz]. IR (KBr pellet): 1167 and 1172 (nuC-F).

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Patent; CALIFORNIA INSTITUTE OF TECHNOLOGY; Grubbs, Robert H.; Chatterjee, Arnab K.; Choi, Tae-Lim; Goldberg, Steven D.; Love, Jennifer A.; Morgan, John P.; Sanders, Daniel P.; Scholl, Matthias; Toste, F. Dean; Trnka, Tina M.; (27 pag.)US9403854; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 246047-72-3

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

It is a common heterocyclic compound, the ruthenium-catalysts compound, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3 its synthesis route is as follows.,246047-72-3

Example 52 Synthesis of Ru complex 6a To a 50 mL two-necked round bottom flask, after filling with Ar atmosphere, were added ligand 5a (l .Ommol) and CuCl (3.0mmol, 3eq) and 30 mL dry DCM, followed by refilling with Ar three times and protected with Ar balloon in close system. Ru complex lb (l.Ommol) was added under Ar protection, and the mixture was stirred for 0.5 hr at room temperature. After the reaction was complete, the solution was filtered and the filtrate was concentrated and slurred with silica gel. The crude was obtained by silica gel column chromatography and washed with methanol or pentane-DCM to obtain 453mg of yellow-green solid product 6a, yield: 79%. Ru complex (6a) 1HNMR (400 MHz, CDC13): delta 18.53 (s, 1H, Ru=CH), 8.59 (s, 1H), 7.28-6.49 (m, 11H), 4.160 (s, 4H, NCH2CH2N), 2.50 (s, 12H), 2.42 (s, 6H).; Example 59 Synthesis of Ru complex 6h The synthetic procedure is the same as in Example 52 in 1.0 mmol scale. 106 mg of yellow-green solid product 6h was obtained (37% yield). Ru complex (6h) 1HNMR (400 MHz, CDC13): delta 16.52 (s, 1H, Ru=CH), 8.43 (s,1H, N=CH), 8.10 (s, 1H), 7.46-7.22 (m, 2H), 7.73-6.96 (m, 8H), 4.19 (s, 4H, NCH2CH2N), 3.95 (s, 3H), 3.87 (s, 3H), 2.49 (s, 12H), 2.48 (s, 6H).

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Patent; ZANNAN SCITECH CO., LTD.; ZHAN, James Zheng-Yun; WO2011/79439; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

To a slurry of HimtMPh (38 mg, 0.20 mM) and MeONa (10.8 mg, 0.20 mM) in tetrahydrofuran(THF) (5 mL) was added a solution of [RuCl2(PPh3)3] (96 mg, 0.10 mM) in THF(10 mL). The mixture was stirred for 8 h at room temperature. The solvent was removed invacuo, and the residue was washed with hexane. The residue was extracted with dichloromethaneand filtered; the solvent was removed in vacuo and further recrystallized fromCH2Cl2/EtOH/Et2O at room temperature. Block orange crystals of 1¡¤EtOH suitable for Xraydiffraction were obtained in a week. Yield: 90 mg, 86%. 31P NMR (CDCl3): 29.2, 55.6 ppm. 1H NMR (CDCl3): 1.25 (EtOH), 2.35 (s, Me, 6H), 3.72 (EtOH), 6.31 (s, imt-CH, 2H), 6.50 (d, imt-CH, J = 1.6 Hz, 2H), 6.96-6.70 (m, 12H), 7.09-7.13 (m, 6H), 7.19(d, C6H4, J = 8.0 Hz, 4H), 7.26-7.30 (m, 16H) ppm. IR (KBr disk, cm1): 3052 (w), 1634(m), 1595 (m), 1499 (s), 1432 (s), 1362 (s), 1263 (s), 1098 (s), 1031 (s), 805 (s), 694 (s),538 (s), 524 (s), 500 (m). MS (FAB): m/z 1052 [M+], 790 [M+ – PPh3], 528 [M+ -2PPh3]. Anal. Calcd for C56H48N4P2S2Ru¡¤(C2H6O) (%): C, 66.20; H, 5.36; N, 5.32.Found: C, 66.11; H, 5.34; N, 5.35

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Qin, Yi; Ma, Qing; Jia, Ai-Quan; Chen, Qun; Zhang, Qian-Feng; Journal of Coordination Chemistry; vol. 66; 8; (2013); p. 1405 – 1415;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO245,mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

After a 50 mL two-necked flask was purged with argon, the ligand 3m (10 mmol), 30 mL of CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate after filtration to obtain sand. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to obtain a green solid product 4m. The yield was 84%.

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI