Extracurricular laboratory: Synthetic route of 246047-72-3

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

Complex 1 (2.0 grams) was dissolved in toluene (10 mL), and 4-phenylpyridine (1.50 grams, 4 mol equivalents) was added. The reaction flask was purged with argon and the reaction mixture was stirred for approximately 12 hours at about 20 C. to about 25 C. during which time a color change from dark purple to dark green was observed. The reaction mixture was transferred into 75 mL of cold (about 0 C.) pentane, and a dark green solid precipitated. The precipitate was filtered, washed with 420 mL of cold pentane, and dried under vacuum to afford (IMesH2)(C11H9N)2(Cl)2Ru-CHPh 13 as a dark green powder (2.0 grams, 97% yield). [00135] 1H NMR (500 MHz, CD2Cl2): d19.23 (s, 1H, CHPh), 8.74 (br. s, 2H, pyridine), 7.91 (br. s, 2H, pyridine), 7.70-7.08 (multiple peaks, 19H, ortho CH, para CH, meta CH, pyridine), 6.93 (br. S, 2H, Mes CH) 6.79 (br. s, 2H, Mes CH), 4.05 (br. s, 4H, NCH2CH2N), 2.62-2.29 (multiple peaks, 18H, Mes CH3).

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; California Institute of Technology; Cymetech, LLP; US6759537; (2004); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 246047-72-3

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 13a (22.0 mg, 0.038 mmol) in anhydrous CH2Cl2 (5.0 ml) was added2nd generation Grubbs catalyst (29.0 mg, 0.034 mmol) and CuCl (I) (7.5 mg, 0.075mmol) under nitrogen at 30 C and stirred for 3 h. The reaction mixture wasconcentrated in vacuo, and the residue was purified by column chromatography onsilica gel (hexane / CH2Cl2 = 1 / 1) to give 3a (14.0 mg, 35%).Green crystals; mp 178-183 C (dec.); 1H NMR (270 MHz, CDCl3) delta 2.09-2.00 (m, 2H),2.43 (d, J = 14.0 Hz, 18H), 2.86 (t, J = 12.1 Hz, 2H), 4.17 (s, 4H), 4.27 (t, J = 10.2 Hz,2H), 6.91 (s, 1H), 7.08 (s, 4H), 7.43 (s, 1H), 16.32 (s, 1H); 19F NMR (466 MHz, CDCl3)delta -80.5 (3F), -109.2 (2F), -121.0 (2F), -121.3 (2F), -121.7 (4F), -122.5 (2F), -126.0(2F); 13C NMR (68 MHz, CDCl3) delta 19.2, 21.0, 22.1, 23.6, 51.7, 70.2, 118.0, 123.3,124.2, 127.1, 129.6, 136.1, 138.7, 139.0, 142.8, 143.2, 151.8, 209.2, 288.5; IR (FT)3979, 3857, 3747, 3685, 3417, 2956, 2918, 2363, 2336, 1596, 1481, 1413, 1240, 1208,1140, 1046, 988, 904, 857, 809, 741, 720 cm-1; HRMS (FAB) m/z [M+H]+ calcd forC39H36Cl2F17N2ORu 1044.0977; found 1044.0991.

246047-72-3, As the paragraph descriping shows that 246047-72-3 is playing an increasingly important role.

Reference£º
Article; Kobayashi, Yuki; Suzumura, Naoki; Tsuchiya, Yuki; Goto, Machiko; Sugiyama, Yuya; Shioiri, Takayuki; Matsugi, Masato; Synthesis; vol. 49; 8; (2017); p. 1796 – 1807;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

Compound 10 (628.5 mg, 1.0 mmol) and degassed morpholine (15 mL) were placed in a 100-mL Young-Schlenk container substituted with argon gas. Thereafter, the Young-Schlenk container was placed in an oil bath, and heated to 120 C. while stirring the components in the Young-Schlenk container, thereby causing a reaction. The progress of the reaction was confirmed by TLC, and the heating was stopped after two hours. Subsequently, the morpholine in the reaction mixture restored to room temperature (25 C.) was removed after collection with a liquid nitrogen trap under reduced pressure (0.1 to 2 mmHg). At this time, the reaction mixture was sufficiently stirred, and the Young-Schlenk container was immersed in water at room temperature (25 C.) to prevent cooling of the Young-Schlenk container by the heat of vaporization. (0255) After sufficiently removing the morpholine, dichlorotris(triphenylphosphino)ruthenium (II) (958.8 mg, 1.0 mmol) and dehydrated toluene (20 mL) were added while introducing argon gas into the container, and the mixture was heated to 110 C. using an oil bath, thereby causing a reaction. The heating was stopped after two hours, and the reaction mixture was restored to room temperature (25 C.). (0256) Subsequently, dehydrated hexane (40 mL) was added to the reaction mixture in an argon gas atmosphere. Thereafter, the whole mixture, including the hexane layer and the toluene layer, in the Young-Schlenk container was stirred and completely mixed. After leaving the mixture unattended for an hour, the generated purple substance was filtered out in an argon atmosphere while being washed with dehydrated diethylether, thereby obtaining a crude product. (0257) Subsequently, the resulting crude product was subjected to column chromatography (developing solvent: chloroform/THF=10/1) in which silica gels were accumulated to about 10 cm, thereby removing a compound with high polarity. The effluent was collected to a flask and the collection was continued until the color of the purple liquid was slightly diluted. After this operation, the solution collected in the recovery flask was rapidly concentrated by an evaporator, thereby obtaining 563.7 mg (0.73 mmol, 73%) of substantially pure Compound 2f (RUPCY3) as a purple substance. (0258) The spectral data of Compound 2f (RUPCY3) is shown below. (0259) 1H NMR (600 MHz, CDCl3): delta 8.12 (d, 2H, J=8.2 Hz, C12H6N2), 7.86 (d, 2H, J=8.2 Hz, C12H6N2), 7.80 (s, 2H, C12H6N2), 4.05 (d, 4H, J 35=7.6 Hz, PCH2), 2.42-2.51 (br, 4H, C6H11), 2.31 (d, 4H, J=11.0 Hz C6H11), 2.12 (d, 4H, J=12.4 Hz, C6H11), 1.61-1.94 (m, 20H, C6H11), 1.18-1.37 (m, 12H, C6H11). 13C NMR (151 MHz, CDCl3): delta 163.6, 149.3, 132.6, 128.6, 125.3, 121.8, 41.4, (d, 1JPC=23.1 Hz) 36.6 (t, 1JPC=7.2 Hz), 30.7, 29.4, 27.8, 27.6, 26.4. 31P{1H} NMR (243 MHz, CDCl3): delta 56.8. HRMS (ESI, (M-Cl)+) Calcd for C38H54ClN2P2Ru+: 737.2494. Found m/z=737.2483. (0260) FIG. 2 shows the result of an X-ray single crystal structural analysis (Oak Ridge Thermal Ellipsoid Plot) of Compound 2f., 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; National University Corporation Nagoya University; Saito, Susumu; Noyori, Ryoji; Miura, Takashi; Naruto, Masayuki; Iida, Kazuki; Takada, Yuki; Toda, Katsuaki; Nimura, Sota; Agrawal, Santosh; Lee, Sunkook; (42 pag.)US9463451; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 15529-49-4

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (1.52 g, 1.58 mmol) is added to a solution of N-(2-(diphenylphosphino)benzylidene)-2-(ethylthio)ethanamine (0.60 g, 1.58 mmol) in toluene (13 ml). After stirring for 19 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension DCM (20 ml) is added. After stirring for 15 min the suspension is filtered and dried under vacuo. Complex 6 is obtained as a red solid (0.88 g, 69%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.80 (d, J=8.84, 1H), 7.56-6.81 (m, 29H), 6.35 (m, 2H), 4.60 (m, 1H), 4.20 (m, 1H), 3.03 (m, 2H), 2.29 (m, 1H), 0.92 (t, J=7.33, 3H). 31P-NMR (500 MHz, CDCl3): 45.68 (d, J=30.23, 1P), 29.60 (d, J=30.23, 1P). MS (ESI): 811.10 (40%, M+), 776.12 (100%, [M-Cl]+). Anal. calcd. for C41H39Cl2NP2RuS: C, 60.66%; H, 4.84%; N, 1.73%. Found: C, 60.85%; H, 4.90%; N, 1.64%

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

A suspension of 1.00 g (1.18 mmol) of [RuCl2(PCy3)(ImH2Mes)(phenylmethylene)] (commercially available from Sigma- Aldrich Inc., St. Louis, USA), 0.14 g (1.41 mmol) of copper chloride and 0.37 g (1.41 mmol) of 2-methyl-l-pyrrolidin-l-yl-2-(2-vinyl-phenoxy)- propan-1-one in 80 ml of dichloro methane was stirred for 90 min at 400C. The reaction mixture was evaporated to dryness at 40C/10 mbar. The residue was stirred in 25 ml of ethyl acetate for 15 min at room temperature. The dark green suspension was filtered and the filtrate concentrated to a total volume of 5 ml. To the green solution, 15 ml of pentane were added and the formed suspension was stirred for 30 min at room temperature and filtered. The filter cake was washed with 40 ml of pentane and dried at 25C/10 mbar over night to afford 0.68 g (80% yield) of the title compound as a green powder.MS: 723.2 (M+).

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2009/124853; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 301224-40-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, 301224-40-8

301224-40-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, cas is 301224-40-8,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

trans-RuC12(slMes)(CHC6H4O1-Pr)(Ph2P(OMe)), trans-C843: C627 (1 .0 g,1.59 mmol) was dissolved in degassed DCM (25 mL) in an 1-neck round-bottomed flask with a magnetic stir bar under nitrogen, to which methyl diphenylphosphinite (0.379g, 1.75 mmol) was added. The flask was capped with a gas adaptor. The mixture was degassed via N2/vacuum cycle 3-times. After 1 h of stirring at room temperature, the solvent was removed under high vacuum. Degassed methanol (75mL) was added to the residue. A purple solid was collected by a frit funnel with vacuum filtration. The solid was further dried under high vacuum for 16h. Yield: 0.7 g (69%). ?H NIVIR (400 MHz, CDC13, ppm): oe 19.60 (s, RuCH, 1H), 7.95 (dd, J = 8 Hz, J = 2 Hz, 1H), 7.22 – 6.80 (b, 13H), 6.66 (b, 1H), 6.44 (d, J = 8 Hz, 1H), 6.25 (t, J = 8 Hz, 1H), 6.02 (b, 1H), 4.42 (septet, J = 6 Hz, OCHIVIe2, 1H), 4.13 – 3.78 (b, NCH2CH2N, 4H), 3.11 (d, J = 7 Hz, OCH3, 3H), 2.72 (b, 3H), 2.58 (b, 3H), 2.52 (b, 3H), 2.30 (s, 3H), 2.03 (b, 3H), 1.85 (s, 3H), 1.49 (b, 3H), 1.29 (b, 3H). 3?P NIVIR (162 IVIHz, CDC13): oe 135.7 (s).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, 301224-40-8

Reference£º
Patent; MATERIA, INC.; GIARDELLO, Michael, A.; TRIMMER, Mark, S.; WANG, Li-Sheng; DUFFY, Noah, H.; JOHNS, Adam, M.; RODAK, Nicholas, J.; FIAMENGO, Bryan, A.; PHILLIPS, John, H.; (127 pag.)WO2017/53690; (2017); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 172222-30-9

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, 172222-30-9

172222-30-9, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

EXAMPLE 1 Metathesis by Ethenolysis of Methyl Oleate Catalyzed by a Type 3 Complex (FIG. 1) in an Ionic Liquid; 1 ml of 3-butyl-1,2-dimethylimidazolium bis-triflylamide with formula [BMMI]+[N(CF3SO2)2]- pre-dried overnight at 80 C., 148 mg of methyl oleate (source: Fluka, with a purity higher than 98%) and 15 mg of the complex with formula Cl2Ru(CH-o-O-iPrC6H4)PCy3 (synthesized by reacting the 1st generation Grubbs complex with formula Cl2Ru(CHC6H5)(PCy3)2 with 1-isopropoxy-2-vinylbenzene in the presence of CuCl), this corresponding to 5% molar of catalyst with respect to methyl oleate, were introduced, in an inert atmosphere of argon, into an autoclave reactor provided with an agitation system and a pressure sensor. The autoclave was then placed under vacuum and pressurized to obtain a pressure of 10 bars (1 MPa) of ethylene (origin: Alphagas, quality N25). The temperature was kept constant at 20 C. The medium was stirred at ambient temperature for 2 hours, then the excess ethylene was slowly purged by returning to atmosphere pressure at a temperature not exceeding 20 C. and the autoclave was again placed under an atmosphere of argon. The products were separated from the ionic liquid by adding 2 to 3 ml of heptane distilled over CaH2 and degassed. An aliquot (100 mul) of the extracted solution was passed through a short silica column (2 cm) eluted with diethyl ether. It was analyzed by gas phase chromatography (ZB-1 column, 100% dimethylpolysiloxane, 30 metres, helium vector gas 2 ml/min, temperature programming: 60 C. then 5 C./min to 220 C.) coupled to a mass spectrometer. The methyl oleate conversion was 95%. It was calculated using decane as an internal reference. The reaction products were composed of 1-decene (fraction A) and methyl decenoate (fraction B). The presence of 1-decene isomers was not detected. Homo-metathesis products were present in trace amounts and could not be quantified.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, 172222-30-9

Reference£º
Patent; Olivier-Bourbigou, Helene; Vallee, Christophe; Hillion, Gerard; US2007/179307; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 301224-40-8

301224-40-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,301224-40-8 ,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, and cas is 301224-40-8, its synthesis route is as follows.

In a glovebox complex 16 (0.125 g, 0.200 mmol) was dissolved in dichloromethane (3 ml), resulting in a darkgreen solution. AgOCN (149.89 g/mol, 0.460 mmol, 0.0689 g, 2.3 eq.) was suspended in DMF (2 ml) and slowly added.The reaction mixture was stirred for 3.5 h at room temperature before it was filtered and the resulting brown-greensolution dried in vacuum. The residual was dissolved in toluene and the resulting solution was filtered and dried invacuum to give complex 17 as a brown foam (125 mg, yield = 98 %). 1 H NMR (400.13 MHz, C6D6): delta = 16.65 (s, 1 H),7.06 (d, J = 7.4, 2 H), 6.86 (s, 4 H), 6.67 (t, J = 7.4, 1 H), 6.22 (d, J = 8.3, 1 H), 6.12 (s, 2 H), 4.25 (sep, J = 6.1, 1 H),2.23 (s, 12 H), 1.86 (s, 6 H), 1.07 (d, J = 6.1, 6 H). Complex 17 was dissolved in THF (5 ml) and 2a (78 mg, 0.200 mmol)was added as a solid in small portions. Residual reactant was transferred into the reaction mixture as a solution/suspensionin THF (1.5 ml). After 2 h a dark green solution had formed. The mixture was stirred for another 70 hours before all volatiles were removed under reduced pressure. The residual was dissolved in a minimum amount of dichloromethane,and then pentane was slowly added, in such a way as to obtain two separate layers, which were allowed to diffuse slowly(one week) into each other at -32C. The dark green crystals of 8a?CH2Cl2?C5H12 were isolated and washed three timeswith pentane and dried in the glovebox (82 mg, yield = 38 %).1H NMR (600.17 MHz, CD2Cl2): delta = 14.44 (s, 1 H, Ru=CH), 7.68-7.59 (br m, 2 H), 7.59-7.50 (br m, 3 N), 7.46-7.41 (m,2 H), 7.38-7.30 (m, 3 H), 7.27-7.21 (m, 1 H), 7.18 (br d, J = 1.9, 1 H), 7.05-6.97 (br m, 3 H), 6.95 (s, 2H), 6.90-6.70 (brm, 8 H), 6.60 (br dd, J = 7.5, 1.5 Hz, 1 H), 6.54 (br d, J = 8.3, 1 H), 4.25 (sep, J = 6.1 Hz, 1H), 2.41 (s, 6H), 2.13 (s, 6H),1.97 (s, 6H), 0.94 (d, J = 6.1 Hz), 0.59 (d, J = 6.1 Hz). 13C{1H} NMR (150.91 MHz, CD2Cl2): delta= 272.51, 272.48, , 175.90,153.92, 149,22, 147,26, 145,54, 145.17, 142.73, 141.54, 141.03, 139.19, 137.57, 137.30, 137.15, 136.07, 131.70,131.19, 129.28, 129.05, 128.98, 128,82, 128,56, 128.32, 127.84, 127.72, 127.60, 127.26, 126.98, 126.91, 125.63,124.96, 122.79, 122.16, 113.11, 76.29, 21.26, 21.07, 20.70, 19.77, 18.51. HRMS (ESI+), m/z: 955.28427 [M+Na]+;calculated for C56H53N3NaO2101RuS: 955.28120.

301224-40-8, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,301224-40-8 ,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Bergen Teknologioverf¡ãring AS; Jensen, Vidar Remi; Occhipinti, Giovanni; EP2826783; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 20759-14-2

20759-14-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,20759-14-2 ,Ruthenium(III) chloride hydrate, other downstream synthetic routes, hurry up and to see

Ruthenium(III) chloride hydrate, cas is 20759-14-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

(4) Preparation of trans-3′-oxospiro[cyclohexane-1,1′(3’H)-isobenzofuran]-4-carboxylic acid A mixture of 4-hydroxymethylspiro[cyclohexane-1,1′(3’H)-isobenzofuran]-3′-one (190 mg), chloroform (2.0 mL), acetonitrile (2.0 mL) and sodium phosphate buffer (pH6.5, 2.0 mL) was cooled to 0 C., to which sodium periodate (612 mg) and ruthenium(III) chloride n-hydrate (10 mg) were added and the mixture was stirred for 30 minutes. The reaction mixture was stirred together with 1N hydrochloric acid (2.0 mL) for 30 minutes and partitioned between water (50 mL) and ethyl acetate (50 mL). The organic layer was washed with saturated saline solution, dried over anhydrous Na2SO4 and then concentrated. The residue was purified by column chromatography on silica gel (chloroform/methanol=100/1) to give the subject compound (98.6 mg).

20759-14-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,20759-14-2 ,Ruthenium(III) chloride hydrate, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Banyu Pharmaceutical Co., Ltd.; US6326375; (2001); B1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI