New learning discoveries about 246047-72-3

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

After a 50 mL two-necked flask was replaced by argon, the ligand 3 cu (10 mmol), CuCl (30 mmol, 3 eq) and 30 mL of dry DCM were sequentially added and the mixture was purged three times with argon to protect the closed system with an argon balloon. Ruthenium complex 1b (12 mmol) was added under argon atmosphere, and the reaction was carried out at room temperature for 0.5 hour. After the reaction was over, silica gel was added to the filtrate to prepare a sand product. The crude product was obtained by silica gel column chromatography and then washed with methanol or pentane-DCM to give 4cu green solid product in a yield of 65%.

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Zannan Science And Technology (Shanghai) Co., Ltd.; Zhan Zhengyun; (102 pag.)CN104262403; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Synthesis of the new ruthenium promoters 4 and 10 was carried out in this work. For the synthesis of complex 4 a THF solution of the thalium salt of the Schiff base ligand [20] was added the equivalent amount of Cl2Ru(PPh3)3 and the mixture stirred overnight at room temperature. After work-up [11b,20] the solid residue was dissolved in a minimal amount of toluene, reprecipitated with pentane, filtered off, briefly washed on the funnel with pentane and dried in vacuo to afford an orange-brown powder (78% yield) which was stored under inert atmosphere. 1H NMR (300 MHz, CDCl3): delta 2.36 [s, 3H, CH3]; 7.10-7.80 [m, 34H, aryl-CH]; 9.95 ppm (s, 1H, aldimine ligand).

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Dragutan, Ileana; Ding, Fu; Sun, Ya-Guang; Verpoort, Francis; Dragutan, Valerian; Journal of Molecular Catalysis A: Chemical; vol. 386; (2014); p. 86 – 94;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

The complex RuCl2(PPh3)3 (4) (0.150 g, 0.156 mmol) suspended in 2 ml of distilled toluene, was reacted with HCNN-H (1) (36 mg, 0.174 mmol) and triethylamine (0.22 ml, 0.158 mmol). After stirring the mixture for 2 hours at 110 ?C the solution volume was reduced to about half and the complex was precipitated by adding 2 ml of pentane. The solid obtained was filtered off, washed with pentane (3 x 5 ml) and dried under reduced pressure. Yield 100 mg (74%). Elemental analysis (%) calculated for C50H41ClN2P2Ru. C, 69.16; H, 4.76; N, 3.23. Found: C, 69.35; H, 4.85; N, 3.34. 31P{1H} NMR (81.0 MHz, CD2Cl2, 20 C, H3PO4): delta 56.5 (d, J(PP) = 33.4 Hz), 50.5 (d, J(PP)= 33.4 Hz).

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Universita’ Degli Studi di Udine; RIGO, Pierluigi; BARATTA, Walter; SIEGA, Katia; CHELUCCI, Giorgio Adolfo; BALLICO, Maurizio; MAGNOLIA, Santo; EP2178843; (2013); B1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 246047-72-3

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.246047-72-3,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,as a common compound, the synthetic route is as follows.

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

246047-72-3, The synthetic route of 246047-72-3 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 246047-72-3

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

A common heterocyclic compound, the ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

Complex 1(2.0 grams) was dissolved in toluene (10 mL), and 4-phenylpyridine (1.50 grams, 4 mol equivalents) was added. The reaction flask was purged with argon and the reaction mixture was stirred for approximately 12 hours at about 20 C. to about 25 C. during which time a color change from dark purple to dark green was observed. The reaction mixture was transferred into 75 mL of cold (about 0 C.) pentane, and a dark green solid precipitated. The precipitate was filtered, washed with 4¡Á20 mL of cold pentane, and dried under vacuum to afford (IMesH2)(C11H9N)2(Cl)2RuCHPh 13 as a dark green powder (2.0 grams, 97% yield). 1H NMR (500 MHz, CD2Cl2): delta19.23 (s, 1H, CHPh), 8.74 (br. s, 2H, pyridine), 7.91 (br. s, 2H, pyridine), 7.70-7.08 (multiple peaks, 19H, ortho CH, para CH, meta CH, pyridine), 6.93 (br. S, 2H, Mes CH) 6.79 (br. s, 2H, Mes CH), 4.05 (br. s, 4H, NCH2CH2N), 2.62-2.29 (multiple peaks, 18H, Mes CH3).

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; Grubbs, Robert H.; Morgan, John P.; Love, Jennifer A.; Trnka, Tina M.; US2003/236427; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: A methanol (10ml) solution containing the appropriate N-S pro-ligand and triethylamine was refluxed under argon for 15min and then the complex [RuCl2(PPh3)3] was added. The resulting brown suspension was refluxed for 3h, to afford a yellow suspension. After cooling, the yellow solid was collected by filtration, washed with methanol (3¡Á5ml), and dried under reduced pressure. 2.6.1 [Ru(mctz)2(PPh3)2] (1) Hmctz (0.019 g – 1.8 * 10-4 mol); NEt3 (26 mul – 1.8 * 10-4 mol), and [RuCl2(PPh3)3] (0.085 g – 8.9 * 10-5 mol). Yield: 50 mg – 65.8%. 31P{1H} NMR (81 MHz, CDCl3) 53.5 ppm (s). 1H NMR (200 MHz, CDCl3), delta/ppm: 7.4-7.0 (m, 30H Ph – PPh3); 3.4-2.5 (m (br), 8HCH2-mctz-). Anal. exp. (calc. for C42H38N2P2RuS4) C, 58.0 (58.5); H, 4.4 (4.4); N, 3.2 (3.2); S, 14.6 (14.9). Suitable single crystals were obtained by slow evaporation of a dichloromethane solution.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Appelt, Patricia; Fagundes, Francisco D.; Facchin, Gianella; Gabriela Kramer; Back, Davi F.; Cunha, Mario A.A.; Sandrino, Bianca; Wohnrath, Karen; De Araujo, Marcio P.; Inorganica Chimica Acta; vol. 436; (2015); p. 152 – 158;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-(i-propyl)-1-phenylprop-2-yn-1-ol (compound 18A, 1.5 eq., 0.144 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.48 g (Yield: 93%). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 629.55.

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 246047-72-3

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belong ruthenium-catalysts compound,(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,246047-72-3,Molecular formula: C46H65Cl2N2PRu,mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

A suspension of 1.50 g (1.77 mmol) of [RuCl2(PCy3)(ImH2Mes)(phenylmethylene)] (commercially available from Sigma- Aldrich Inc., St. Louis, USA), 0.19 g (1.94 mmol) of copper chloride and 0.51 g (1.94 mmol) of N,N-diethyl-2-[((E,Z)-2-propenyl)-phenoxy]- propionamide as a 4: 1 mixture of E/Z-isomers in 1 10 ml of dichloromethane was stirred for 40 min at 400C. The reaction mixture was evaporated to dryness at 400C/ 10 mbar. The crude title product was purified by repeated digestion with ethylacetate / pentane / tetrahydrofuran to yield 0.73 g (58%) of the title compound as a green crystalline solid.MS: 711.2 (M+). Anal, calcd. for C35H45Cl2N3O2Ru: C, 59.06; H, 6.37; N, 5.90; Cl, 9.96. Found: C, 58.56; H, 6.44; N, 5.23; Cl, 9.86.Crystals of the title compound suitable for X-ray crystal structure analysis were grown by vapor diffusion of pentane into a solution of 20 mg of [RuCl2(=CH(o- OCH(Me)CONEt2)Ph)(ImH2MeS)] in 2 ml of tetrahydrofuran at room temperature.

With the synthetic route has been constantly updated, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,belong ruthenium-catalysts compound

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2009/124853; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

With the synthetic route has been constantly updated, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

As a common heterocyclic compound, it belong ruthenium-catalysts compound,Dichlorotris(triphenylphosphino)ruthenium (II),15529-49-4,Molecular formula: C54H45Cl2P3Ru,mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum.

With the synthetic route has been constantly updated, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glove box, [RuCl2(PPh3)3] (0.25 mmol) was added to a schlenk flask equipped with a magnetic stir bar. The flask was then attached to a schlenk line and 3.4 mL of freshly distilled toluene added. The mixture was then rapidly stirred. A 1.7 mL toluene solution of Ph2PCH2CH2NH2, (0.50 mmol) in an NMR tube was then added via a cannula. Any residue in the NMR tube and cannula was washed into the flask with 1.7 mL of toluene. The light yellow mixture was then heated at 100 C. for 6 h. The yellow suspension that resulted was allowed to cool to RT before collecting the precipitate by filtration under Argon. The precipitate was then washed with 10.0 mL portions of toluene, three times (until colorless). The yellow solid was then dried in vacuo. Yield: 90%. Note: Excessive scraping of the product should be minimised to prevent the build-up of static electricity, 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; THE GOVERNORS OF THE UNIVERSITY OF ALBERTA; Bergens, Steven; John, Jeremy M.; US2014/163225; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI