Application of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II),cas is 15529-49-4, mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline, 1.5 mmol of p-bromobenzyl alcohol, 1 mmol of bis Dicyclohexylphosphine propane,mmol RuCl2 (PPh3) 3,1 mmol potassium hydroxide, 20 ml dioxane, the temperature was 110 C, heated for 20h under a nitrogen atmosphere, cooledHowever, filtration and recrystallization of the resulting solid from a mixed solvent of CH 2 Cl 2 and petroleum ether gave product 6 in a yield of 87%.

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of Methyl 1,4-Benzodioxan-6-carboxylate

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

A common heterocyclic compound, the ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 246047-72-3

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

246047-72-3, (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To a solution of 18 (10.5 g, 22.4 mmol) in THF (120 mL) was added TBAF (1.0 mol/L in THF, 90 mL, 90 mmol) at 20 C, and the mixture was stirred for 5 h. Then, the mixture was concentrated under reduced pressure, and the residue was purified by recrystallization (PhH + H2O) to give 19 (7.50 g, 21.2 mmol, 95%) as a colorless needle. 19: mp 217e219 C; [a]D24 39.7 (c 0.0350, CHCl3); IR (KBr) n 3484, 3054, 3026, 2891, 1436, 1380, 1265, 1103, 1031, 861, 828, 801, 744, 678, 549, 476 cm1; 1H NMR (400 MHz, CDCl3) d 2.36e2.45 (1H, m), 2.66 (1H, ddd, J 3.6, 8.3, 15.9 Hz), 2.80 (1H, s), 3.34 (1H, t, J 8.5 Hz), 3.39 (1H, ddd, J 4.0, 9.7, 19.4 Hz), 3.53 (1H, dt, J 5.2, 9.7 Hz), 3.65 (1H, t, J 9.3 Hz), 3.77 (1H, t, J 10.5 Hz), 3.89 (1H, t, J 8.8 Hz), 4.07 (1H, brqd, J 2.9, 15.3 Hz), 4.35e4.40 (2H, m), 5.73(1H, s), 5.82e5.88 (1H, m), 5.92e5.98 (1H, m), 7.46e7.50 (2H, m), 7.62 (1H, d, J 8.5 Hz), 7.82e7.88 (3H, m), 7.99 (1H, s); 13C NMR (100 MHz, CDCl3) d 34.3 (CH2), 68.5 (CH2), 68.9 (CH2), 69.9 (CH), 73.6 (CH), 76.4 (CH), 80.9 (CH), 87.8 (CH), 101.9 (CH), 123.8 (CH), 125.8 (CH), 126.1 (CH), 126.4 (CH), 127.3 (CH), 127.7 (CH), 128.2 (CH),128.4 (CH), 131.7 (CH), 132.9 (C), 133.7 (C), 134.4 (C); EI-HRMS (m/z) calcd for C21H22O5 [M]: 354.1467, found: 354.1464.

246047-72-3, 246047-72-3 (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium 11147261, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Sato, Takuto; Nogoshi, Keisuke; Goto, Akiyoshi; Domon, Daisuke; Kawamura, Natsumi; Nomura, Yoshitaka; Sato, Daisuke; Tanaka, Hideki; Murai, Akio; Katoono, Ryo; Kawai, Hidetoshi; Suzuki, Takanori; Fujiwara, Kenshu; Kondo, Yoshihiko; Akiba, Uichi; Tetrahedron; vol. 73; 6; (2017); p. 703 – 726;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

A common heterocyclic compound, the ruthenium-catalysts compound, name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium,cas is 246047-72-3, mainly used in chemical industry, its synthesis route is as follows.,246047-72-3

A suspension of 1.00 g (1.18 mmol) of [RuCl2(PCy3)(ImH2Mes)(phenylmethylene)](commercially available from Sigma- Aldrich Inc., St. Louis, USA), 0.13 g (1.30 mmol) of copper chloride and 0.38 g (1.30 mmol) oflambda/-phenyl-2-[((E,Z)-2-propenyl)-phenoxy]- propionamide as a 4:1 mixture ofE/Z-isomers in 75 ml of dichloromethane was stirred for 30 min at 400C. The reaction mixture was evaporated to dryness at 400C/ 10 mbar. The residue was stirred in 75 ml of ethyl acetate for 30 min at room temperature. The dark green suspension was filtered and the filtrate was evaporated to dryness at 40C/10 mbar. The crude title product was purified by silica gel chromatography (cyclohexane/ethyl acetate 4:1) to yield 0.75 g (88% yield) of the title compound as a green powder.MS: 731.1 (M+). Anal, calcd. for C37H4ICl2N3O2Ru ? V3 C6Hi2: C, 61.65; H, 5.97; N, 5.53; Cl, 9.33. Found: C, 61.83; H, 6.71; N, 5.35; Cl, 8.93.

As the rapid development of chemical substances, we look forward to future research findings about 246047-72-3

Reference£º
Patent; F. HOFFMANN-LA ROCHE AG; WO2009/124853; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 3-Methyl-1,2,3,4-tetrahydroisoquinoline

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II),cas is 15529-49-4, mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum. Complex 2a: [RuCl2(PPh3)3] complex (0.30g, 0.31mmol), Schiff base 1a (0.070g, 0.37mmol), NaOH (0.18g, 0.45mmol), and methanol (20mL) afforded 0.25g (80%) of the title complex as a yellow solid: anal. calculated for C49H48ClNOP2Ru was 68.01C, 5.59H and 1.62% N; found: 68.34C, 5.55H and 1.60% N. UV-Vis: lambdamax(n) (nm), epsilonmax(n) [M-1cm-1]: lambdamax(1) (252), epsilonmax(1) [10020], lambdamax(2) (370), epsilonmax(2) [625], lambdamax(3) (422), epsilonmax(3) [240]; IR (KBr): nux (cm-1): nuC=N (1618), nuC-O (1355); 1H NMR: (CDCl3, 400MHz): 7.30-7.70 (m, 12H: metha-PPh3 and 1H: CH=N), 7.30-7.70 (m, 6H, para-PPh3), 7.21-7.30 (m, 12H, ortho-PPh3), 6.63-6.68 (m, 1H, salicyl-ring), 6.4-6.5 (dd, 3JH,H=1.6Hz, dd, 3JH,H=1.2Hz, 1H, salicyl-ring), 6.04-6.10 (m, 1H, salicyl-ring), 5.85-5.80 (m, 1H, salicyl-ring), 3.85-3.92 (m, 1H, CHPentyl), 1.60-1.80 (m, 3H, CH2Pentyl), 1.29-1.38 (m, 4H, CH2Pentyl), 1.07-1.15 (m, 1H, CH2Pentyl),13C NMR (CDCl3) delta 166.12, 160.83, 135.16, 135, 134.84, 134.26, 134.21, 134.16, 132.12, 132.04, 131.93, 131.91, 129, 128.53, 128.44, 127.62, 127.59, 127.55, 123.36, 121.99, 111.80, 75.92, 32.39, 23.43; 31P{1H} NMR (CDCl3: delta, ppm): 43.15 (s). EPR: no signal was observed.

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Compound 6 (604.4 mg, 1.0 mmol) and degassed morpholine (20 mL) were placed in a 100-mL Young-Schlenk container substituted with argon gas. Thereafter, the Young-Schlenk container was placed in an oil bath, and heated to 120 C. while stirring the components in the Young-Schlenk container, thereby causing a reaction. The progress of the reaction was confirmed by TLC, and the heating was stopped after two hours. Subsequently, the morpholine in the reaction mixture restored to room temperature (25 C.) was removed after collection with a liquid nitrogen trap under reduced pressure (0.1 to 2 mmHg). At this time, the reaction mixture was sufficiently stirred, and the Young-Schlenk container was immersed in water at room temperature (25 C.) to prevent cooling of the Young-Schlenk container by the heat of vaporization. (0217) After sufficiently removing the morpholine, dichlorotris(triphenylphosphino)ruthenium (II) (958.8 mg, 1.0 mmol) and dehydrated toluene (20 mL) were added while introducing argon gas into the container, and the mixture was heated to 110 C. using an oil bath, thereby causing a reaction. The heating was stopped after three hours, and the reaction mixture was restored to room temperature (25 C.). (0218) Subsequently, dehydrated hexane (40 mL) was added to the reaction mixture in an argon gas atmosphere. Thereafter, the whole mixture, including the hexane layer and the toluene layer, in the Young-Schlenk container was stirred and completely mixed. After leaving the mixture unattended for 15 minutes, the generated purple substance was filtered out in an argon atmosphere while being washed with dehydrated diethylether, thereby obtaining a crude product. (0219) Subsequently, the resulting crude product was subjected to column chromatography (developing solvent: chloroform/ethyl acetate=5/1) in which silica gels were accumulated to about 10 cm, thereby removing a compound with high polarity. The effluent was collected to a flask and the collection was continued until the color of the purple liquid was slightly diluted. After this operation, the solution collected in the recovery flask was rapidly concentrated by an evaporator, thereby obtaining 435.1 mg (0.58 mmol, 58%) of substantially pure Compound 2c (RUPCY2) as a purple substance. (0220) The spectral data of Compound 2c (RUPCY2) is shown below. (0221) 1H NMR (500 MHz, CDCl3): delta 7.86 (d, 2H, J=7.4 Hz, C10H6N2), 7.66 (t, 2H, J=7.5 Hz, C10H6N2), 7.56 (d, 2H, J=7.5 Hz, C10H6N2), 3.87 (d, 4H, J=8.1 Hz, PCH2), 2.41 (br, 4H, C6H11), 2.18 (d, 4H, J=12.1 Hz, C6H11), 2.05 (d, 4H, J=10.9 Hz, C6H11), 1.54-1.81 (m, 20H, C6H11), 1.20-1.34 (m, 20H, C6H11). 13C NMR (150 MHz, CDCl3): delta 163.3, 158.3, 134.1, 122.0, 119.9, 40.5 (d, 1JPC=13.0 Hz), 36.3, 30.3, 29.4, 27.7, 27.5, 26.4. 31P{1H} NMR (241 MHz, CDCl3): delta 54.1. HRMS (ESI, (M-Cl)+) Calcd for C36H54ClN2P2Ru+: 713.2494. Found m/z=713.2476. (0222) FIG. 1 shows a result of X-ray single crystal structural analysis (Oak Ridge Thermal Ellipsoid Plot) of Compound 2c.

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; National University Corporation Nagoya University; Saito, Susumu; Noyori, Ryoji; Miura, Takashi; Naruto, Masayuki; Iida, Kazuki; Takada, Yuki; Toda, Katsuaki; Nimura, Sota; Agrawal, Santosh; Lee, Sunkook; (42 pag.)US9463451; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride

With the complex challenges of chemical substances, we look forward to future research findings about 301224-40-8,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, and cas is 301224-40-8, its synthesis route is as follows.,301224-40-8

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

With the complex challenges of chemical substances, we look forward to future research findings about 301224-40-8,belong ruthenium-catalysts compound

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a round-bottomed flask with a stir bar was placed with [Ru(PPh3)3Cl2] (868 mg, 2.0 mmol) under the nitrogen. Pre-dried THF(10 mL) was added and the resulting mixture was stirred at room temperature. Then salen-enH2 (536 mg, 2.0 mmol) and a little excess of Et3N (252 mg, 2.5 mmol) in THF (5 mL) were added. The reaction mixture was stirred at room temperature overnight. After removal of solvents, CH2Cl2 (15 mL) was added and the solution was filtered through cilite. The filtrate was concentrated and the residue was washed with Et2O (5mL 2) and hexane (5 mL 2) to give the desired product. Recrystallization from CH2Cl2/Et2O (1:2) afforded green block-shaped crystals of [RuCl(PPh3)(salen)] (3) suitable for X-ray diffraction in three days. Yield: 1011 mg, 76% (based on Ru)., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Tang, Li-Hua; Wu, Fule; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 477; (2018); p. 212 – 218;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of Copper(II) trifluoromethanesulfonate

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

The ruthenium-catalysts compound, cas is 15529-49-4 name is Dichlorotris(triphenylphosphino)ruthenium (II), mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

To a solution of ONS-LH (486mg, 2.0mmol) in THF (20mL) was added [Ru(PPh3)3Cl2] (868mg, 2.0mmol), which was then stirred under N2 for 15min. Triethylamine (Et3N) (202mg, 2.0mmol) was introduced, and the reaction mixture was stirred overnight at room temperature, during which the color of solution changed from brown to dark red brown. After removal of solvents in vacuo, CH2Cl2 (20mL) was added and the solution was filtered. The filtrate was concentrated and the residue was washed with Et2O (5mL¡Á2) and hexane (5mL¡Á2) to give the desired product. Recrystallization from MeOH/ Et2O (1:3) afforded dark red block crystals of 1¡¤0.5CH3OH¡¤2.75H2O suitable for X-ray diffraction in five days. Yield: 1.19g, 63% (based on Ru). IR (KBr disc, cm-1): 1597 (nuC=N), 1311 (nuC-O), 739 (nuC-S), 1432, 1087 and 691 (nuPPh3); 31P NMR (CDCl3, 162MHz): delta 16.4 (s, PPh3), 14.7 (s, PPh3) ppm. 1H NMR (CDCl3, 400MHz): delta 8.81 (s, 1H, CH=N), 7.98-7.31 (m, 4H, Ar-H), 7.23-7.06 (m, 4H, Ar-H), 6.75-7.01 (m, 30H, PPh3), 2.39 (s, 3H, SCH3) ppm. MS (FAB): m/z 903 [M+], 868 [M+-Cl], 641 [M+-PPh3], 379 [M+-2PPh3], 344 [Ru(ONS-L)]+. Anal. Calc. for C50H42NOP2ClSRu¡¤0.5(CH4O)¡¤2.75(H2O) (%): C, 64.74; H, 4.98; N, 1.48. Found: C, 64.67; H, 5.03; N, 1.43

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Wang, Chang-Jiu; Lin, Hui; Chen, Xin; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 467; (2017); p. 198 – 203;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum.

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI