Downstream synthetic route of 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

To a slurry of HimtMPh (38 mg, 0.20 mM) and MeONa (10.8 mg, 0.20 mM) in tetrahydrofuran(THF) (5 mL) was added a solution of [RuCl2(PPh3)3] (96 mg, 0.10 mM) in THF(10 mL). The mixture was stirred for 8 h at room temperature. The solvent was removed invacuo, and the residue was washed with hexane. The residue was extracted with dichloromethaneand filtered; the solvent was removed in vacuo and further recrystallized fromCH2Cl2/EtOH/Et2O at room temperature. Block orange crystals of 1¡¤EtOH suitable for Xraydiffraction were obtained in a week. Yield: 90 mg, 86%. 31P NMR (CDCl3): 29.2, 55.6 ppm. 1H NMR (CDCl3): 1.25 (EtOH), 2.35 (s, Me, 6H), 3.72 (EtOH), 6.31 (s, imt-CH, 2H), 6.50 (d, imt-CH, J = 1.6 Hz, 2H), 6.96-6.70 (m, 12H), 7.09-7.13 (m, 6H), 7.19(d, C6H4, J = 8.0 Hz, 4H), 7.26-7.30 (m, 16H) ppm. IR (KBr disk, cm1): 3052 (w), 1634(m), 1595 (m), 1499 (s), 1432 (s), 1362 (s), 1263 (s), 1098 (s), 1031 (s), 805 (s), 694 (s),538 (s), 524 (s), 500 (m). MS (FAB): m/z 1052 [M+], 790 [M+ – PPh3], 528 [M+ -2PPh3]. Anal. Calcd for C56H48N4P2S2Ru¡¤(C2H6O) (%): C, 66.20; H, 5.36; N, 5.32.Found: C, 66.11; H, 5.34; N, 5.35

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Article; Qin, Yi; Ma, Qing; Jia, Ai-Quan; Chen, Qun; Zhang, Qian-Feng; Journal of Coordination Chemistry; vol. 66; 8; (2013); p. 1405 – 1415;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

An anhydrous Et2NH (10 mL) solution of dicyclohexylphosphinomethylpyridine-borane complex (280 mg, 0.923 mmol) was heated at 65C for 48 h under Ar. The solution was cooled to room temperature and Et2NH was removed in vacuo (ca. 10 mmHg, room temperature). To the residue was added sequentially dichlorotris(triphenylphosphino)ruthenium (II) (442.5 mg, 0.46 mmol) and an anhydrous toluene (10 mL). The resulting mixture was heated at 110C for 5 h under Ar, and was cooled to room temperature. Then to the mixture was added an anhydrous hexane (20 mL) to afford the yellow suspension. The mixture of the suspension was stirred at room temperature for 12 h and filtered through a filtration paper. The obtained yellowish orange solid was dried in vacuo (ca. 0.1 mmHg, room temperature) and dissolved in CH2Cl2. This solution was purified by column chromatography on silica gel (EtOAc/hexane =1/4) to afford RUPCY (1a) as orange powder (237 mg, 68%).

With the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Article; Miura, Takashi; Held, Ingmar E.; Oishi, Shunsuke; Naruto, Masayuki; Saito, Susumu; Tetrahedron Letters; vol. 54; 21; (2013); p. 2674 – 2678;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 50982-12-2

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Name is Dichloro(cycloocta-1,5-diene)ruthenium(II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 50982-12-2, its synthesis route is as follows.,50982-12-2

A mixture of (0421) [RuCl2(COD)]n (359 mg, 1.281 mmol), PPh3 (336 mg, 1.281 mmol) and ligand la (341 mg, 1.281 mmol) was stirred in THF (15 ml) at 75 C for 39 h in a KONTES pressure tube. After cooling down, the resulting brick precipitate was collected on a filter frit, washed with diethyl ether (3 >< 5 ml) and vacuum dried. Recrystallization from hot dichloromethane following layering with diethyl ether afforded analytically pure complex A-l in 29% yield (260 mg).

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 50982-12-2

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II), and cas is 50982-12-2, its synthesis route is as follows.,50982-12-2

General procedure: The following common procedure was followed for the synthesesof complexes 1-5: A mixture of the ligand (0.36 mmol) and Ru(1,5-cod)Cl2(0.36 mmol) was dissolved in dry ethanol (10 ml) and the resultingmixture was refluxed for 2 h. The reaction volume was concentratedto a third of its original volume and the suspension was keptat 4 C overnight to give brick red solid which was filtered off,washed with cold ethanol and then diethyl ether. The solid wasdissolved in chloroform and excess of n-hexane was added toinduce the precipitation of the brick red solid product.

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Reference£º
Article; Thangavel, Saravanan; Rajamanikandan, Ramar; Friedrich, Holger B.; Ilanchelian, Malaichamy; Omondi, Bernard; Polyhedron; vol. 107; (2016); p. 124 – 135;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride

With the complex challenges of chemical substances, we look forward to future research findings about 301224-40-8,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride, and cas is 301224-40-8, its synthesis route is as follows.,301224-40-8

HII 65 HII (200mg) and P(0’Pr)3 (5eq) were stirred in for 72h. The crude 65 was recrystallised from DCM/pentane. (400MHz, 298K): 16.05 (d, 1 H, J = 35.3 Hz, C=CH), 10.24 (d, 1 H, J = 9.7 Hz, Ph-H), 6.87-6.83 (m, 2H, Ph-H), 6.78 (s, 1 H, Ph-H), 6.61 (s, 1 H, Ph-H), 6.19-6.16 (m, 2H, Ph- H), 4.67 (brs, 2H, PO-CH-CH3), 4.09-4.06 (m, 1 H, Ph-0-CH-CH3), 4.04 (brs, 1 H, PO- CH-CH3), 3.43-3.40 (m, 1 H), 3.16-3.02 (m, 3H), 2.89 (s, 3H, Mes-CH3), 2.58 (s, 3H, CH3), 2.46 (s, 3H, CH3), 2.42 (s, 3H, CH3), 2.18 (s, 3H, CH3), 1.92 (s, 3H, CH3), 1.48- 0.80 (m, 24H, PO-CH-CH3).31P{1H} (121.49MHz, 298K): 128.7 (s)

With the complex challenges of chemical substances, we look forward to future research findings about 301224-40-8,belong ruthenium-catalysts compound

Reference£º
Patent; UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS; CAZIN, Catherine; WO2011/117571; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 50982-12-2

50982-12-2 Dichloro(cycloocta-1,5-diene)ruthenium(II) 11000435, aruthenium-catalysts compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.,50982-12-2

Complex C-l was also prepared using [RuCl2(COD)]n as a precursor. Thus, a mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PPh3 (289 mg, 1.103 mmol) and ligand Id (248 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115C for 24 h in a KONTES pressure tube. After cooling, the resulting brick colored precipitate was filtered on a filter frit, washed with diethyl ether (3 x 10 ml) and vacuum dried to afford 494 mg of a light pink crude material (Found C, 53.43; H, 5.26; N, 4.08%). Recrystallization from hot THF, filtering and layering with diethyl ether, afforded burgundy crystals (261 mg, 32% yield as a THF solvate). Based on NMR analysis, these crystals represent a THF solvate of complex C-l. The crystals were found to lose solvent based on elemental analysis. Elem. Anal: Calc’d for C3oH35Cl2N2PRuS (658.63): C, 54.71; H, 5.36; N, 4.25%; Found C, 54.37; H, 5.66; N, 3.87%.

50982-12-2 Dichloro(cycloocta-1,5-diene)ruthenium(II) 11000435, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.301224-40-8,(1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride,as a common compound, the synthetic route is as follows.,301224-40-8

In a Schlenk flask, (H2IMes)Cl2Ru(CH-o-OiPrC6H4) (106 mg, 0.169 mmol, 1 eq) was dissolved in degassed CH2Cl2 (18 mL). 5,7-Dichloro-8-hydroxyquinoline (707 mg, 3.303 mmol, 19 eq) and Cs2CO3 (150 mg, 0.461 mmol, 16 eq) were added. The reaction mixture was stirred in a Schlenk flask under argon atmosphere overnight. (0099) The insoluble residue was filtered over celite. According to a TLC (CH/EE 5:1) two derivatives were formed. The products were separated via column chromatography (CH/EE 5:1) and fully characterized by NMR and crystal structure analysis. Yield=83% (46.5 mg 3 and 91 mg 4). (0100) 3: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 19.10 (s, 1H, Ru?CH), 8.09 (d J=4.04, 1H, CHhq), 7.95 (d J=8.56; j=1.43, 1H, CHhq), 7.68 (d J=8.43 j=1.30, 1H, CHPhq), 7.49 (s, 1H, CHhq), 7.17 (s, 1H, CHhq), 7.05 (m, 2H, CHhq), 6.56 (d J=8.04, 1H, CHhq), 6.48 (s, 2H, CHmes), 6.43 6,39 (?, 2H, CHph), 6.14 (s, 2H, CHmes), 6.06 (2H, CHhq+ph), 3.97 (5H, CH2+CHisoprop), 2.45 (s, 6H), 2.27 (s, 6H), 1.90 (s, 6H, CH31, 1?, 2, 2?, 3, 3?), 1.43 (d, 3H, CH3isoprop), 1.05 (d, 3H, CH3isoprop). (0101) 3: 13C-NMR (delta, 20 C., CDCl3, 75 MHz): 338.6 (1C, Ru?CH), 227.6 (1C, Ru-C), 162.6, 161.3, 149.7, 149.4, 149.0, 144.2, 143.2, 142.4, 142.3, 138.1 (Cq), 136.9 (Cq), 136.6 (Cq), 135.8 (Cq), 132.3 (CH), 131.7 (CH), 129.3 (CH), 129.2 (CH), 128.7, 127.7 (CH), 126.2, 125.8, 125.7, 122.2 (CH), 121.6 (CH), 121.0 (CH), 119.5 (CH), 118.9, 112.0, 109.2, 76.2 (1C, CHisoprop), 51.6 (2C, CH2-N), 23.1 (1C, CH3isoprop), 21.5 (1C, CH3isoprop), 20.8, 18.8, 18.5 (2C, CH3mes 7, 7?, 8, 8?, 9, 9?). (0102) 4: 1H-NMR (delta, 20 C., CDCl3, 300 MHz): 18.23 (bs, 1H, Ru?CH), 9.00 (d j=4.67 Hz, 1H, CHhq 1), 8.09 (d J=8.56 Hz, 1H, CHhq 3), 7.83 (d J=8.30 Hz, 1H, CHhq 3) 7.57 (s, 1H, CHhq 4 or 4), 7.12 (s, 1H, CHhq 4 or 4), 7.06 (q, 1H, CHhq 2), 6.94 (t, 1h; CHph 3 or 4), 6.59 (s, 2H, CHmes 3+3? or 5+5?), 6.39 (d, 1H, CHph 2 or 5), 6.26 (s, 2H, CHmes 3+3? or 5+5?), (d, 1H, CHph 2 or 5), (t, 1H, Chhq 2), 5.98 (t, 1H, CHph 3 or 4), 5.32 (d j=4.54 Hz, 1H, CHhq 1), 4.54 (m, 1H, CHisoprop), 3.92 (q, 4H, CH2mes), 2.57 (s, 6H), 2.04 (s, 6H), 1.91 (s, 6H, CH3mes 7, 7?, 8, 8?, 9, 9?), 1.53 (d, 3H, CH3isoprop), 1.31 (d, 3H, CH3isoprop). (0103) 13C-NMR (delta, 20 C., CDCl3, 75 MHz): Ru?C not observed, 209.5 (1C, Ru-C), 166.4 (Cq), 160.9 (Cq), 147.7 (Cq), 146.7 (Cq), 147.1 (Cq), 146.7 (Cq), 164.5 (CH), 146.5 (CH), 144.9 (Cq), 141.2 (CH), 137.1 (Cq), 137.0 (Cq), 136.7 (Cq), 136.5 (Cq), 119.3 (Cq), 125.8 (Cq), 132.7 (CH), 132.2 (CH), 129.2 (CH), 129.1 (2C, CH), 129.0 (CH), 128.6 (CH), 127.9 (CH), 126.4 (Cq), 120.7 (CH), 120.1 (CH), 119.7 (CH), 118.0 (Cq), 111.3 (Cq), 110.5 (CH), 106.4 (Cq), 68.7 (1C, CHisoprop) 51.7 (2C, CH2), 22.7, 22.3 (2C, CH3isoprop), 20.9, 18.9, 18.1 (6C, CH3mes 7, 7?, 8, 8?, 9?). (0104) Even if both of the catalysts possess two 5,7-dichloro-8-hydroxyquinolines, they show different NMR patterns. The different structures were revealed by X-ray diffraction. The crystals for the X-ray diffraction measurement were obtained by slow diffusion of Et2O in a saturated solution of CH2Cl2. The two derivatives exhibit a different geometry considering the 8-quinolinolate substituents. In derivative 3, the oxygen atoms of the two quinolinolates are orientated trans to each other, while in derivative 4 these trans positions are occupied by an oxygen and a nitrogen atom of the two different quinolinolates.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Technische Universitaet Graz; Slugovc, Christian; Wappel, Julia; US8981024; (2015); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 918870-76-5

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II)

Name is Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 918870-76-5, its synthesis route is as follows.,918870-76-5

In a glovebox 13 (800 mg, 1.09 mmol) and AgOCN (374 mg, 2.51 mmol) were suspended in 10 ml of tetrahy-drofuran. The mixture was stirred for three hours at room temperature, and then the solvent was removed under vacuum.The residual was dissolved in dichloromethane and filtered through a short pad of silica gel using dichloromethane/diethylether (9:1) as eluent. The green solution containing complex 14 was concentrated under vacuum and the compoundwas precipitated with pentane at room temperature. The green solid was isolated by cannula filtration and washed threetimes with pentane. The solid was transferred in a glovebox and dried under argon atmosphere (744 mg, 91 % of yield).1H NMR (600.17 MHz, CD2Cl2): delta = 16.25 (br s, 1 H), 7.95 (dd, J = 8.6, 2.2, 1 H), 7.24 (d, J = 2.2, 1 H), 7.14 (br s, 4 H),6.99 (d, J = 8.6, 1 H), 4.94 (sep, J = 6.1, 1 H), 4.19 (s, 4 H), 2.27 (s, 6 H), 2.43 (s, 6 H), 2.41 (s, 12 H), 1.11 (d, J = 6.1,6 H). 13C{1H} NMR (150.91 MHz, CD2Cl2): delta= 295.12, 207.94, 155.24, 143.75, 139.94, 139.26, 135.84, 135.21, 131.02,129.94, 129.29, 121.57, 113.36, 76.88, 51.86, 38.07, 21.17, 20.78, 18.45. HRMS (ESI+), m/z: 767.19735 [M+Na]+;calculated for C35H43N5NaO599RuS: 767.19420.

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II)

Reference£º
Patent; Bergen Teknologioverf¡ãring AS; Jensen, Vidar Remi; Occhipinti, Giovanni; EP2826783; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 10049-08-8

With the complex challenges of chemical substances, we look forward to future research findings about Ruthenium(III) chloride

Name is Ruthenium(III) chloride, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 10049-08-8, its synthesis route is as follows.,10049-08-8

Example 13 Synthesis of (3S)-3-(1,3-benzodioxol-5-yl)-3-[({1-[2-oxo-3-(phenylmethyl)-1(2H)-pyridinyl]cyclohexyl}carbonyl)amino]propanoic Acid Step One: To a solution of 3-benzylpyridine (1.65 g, 9.77 mmol) in acetone (3.5 mL), 1-chloro-2,4-dinitrobenzene (2.00 g, 9.56 mmol) was added and the mixture was refluxed overnight. The mixture was cooled to room temperature, diluted with acetone and the solvent was decanted from the precipitate. The crude solid was washed with acetone (2 times) and diethyl ether (1 time), decanting each time to give 37(3.57 g, 100percent) as a gray solid. Step Two: To a solution of 1-amino-1-hydroxymethylcyclohexane (0.45 g, 3.5 mmol) in n-butanol (8.75 mL), solid N-(2,4-dintrophenyl)-3-benzylpyridinum chloride (37, 1.23 g, 3.3 mmol) was added. The resulting solution was heated to reflux for 2.5 days under a nitrogen atmosphere. The mixture was cooled, diluted with water and filtered. The filtrate was basified with concentrated NH4OH (2 mL) and extracted with ethyl acetate. The aqueous layer was concentrated to dryness to give 38(0.56 g) as a yellow oil which was used without further purification. Step Three: To a solution of crude 38(0.56 g, 3.5 mmol theoretical) in water (10 mL), a solution of potassium ferricyanide (3.3 g, 10 mmol) in water (15 mL) was added dropwise via an addition funnel over 30 minutes at 0¡ã C. A solution of KOH (0.76 g, 13.5 mmol) in water (5 mL) was then added over 30 minutes. Toluene (10 mL) was added and the solution was stirred for one hour at 0¡ã C. The layers were separated, and the aqueous layer was extracted again with toluene. The combined extracts were dried over Na2SO4 and filtered and the filtrate was concentrated under reduced pressure. The residue was chromatographed on silica gel, eluding with 7:13 hexanes:ethyl acetate to give 39(20 mg, 1.9percent, two steps.) Step Four: To a suspension of 39(20 mg, 0.068 mmol) in aqueous KOH (1M, 0.70 mL) potassium persulfate (0.073 g, 0.270 mmol) and ruthenium (III) chloride (1 mg, catalytic) and THF (0.25 mL) were added. The mixture was stirred for 1 hour and extracted with dichloromethane. The aqueous layer was acidified and extracted with ethyl acetate (3 times). The ethyl acetate extracts were combined, dried over MgSO4 and filtered. The filtrate was concentrated under reduced pressure to give 40(0.0148 g, 70percent) as a tan solid. (3S)-3-(1,3-Benzodioxol-5-yl)-3-[({1-[2-oxo-3-(phenylmethyl)-1(2H)-pyridinyl]cyclohexyl}carbonyl)amino]propanoic acid was prepared from 40according to the procedures described in Example 1. 1H NMR (400 MHz, CD3SO2CD3): delta 1.40 (m, 4H), 1.68 (m, 2H), 2.04 (m, 2H), 2.60 (d, J=7.0 Hz, 2H), 3.67 (d, J=15.2 Hz, 1H), 3.72 (d, J=15.2 Hz, 1H), 5.12 (m, 1H), 5.95 (m, 2H), 6.19 (t, J=7.0 Hz, 1H), 6.74 (dd, J=7.8, 1.4 Hz, 1H), 6.76 (d, J=7.8 Hz, 1H), 6.90 (d, J=1.4 Hz, 1H), 7.10 (d, J=5.8 Hz, 1H), 7.20 (m, 5H), 7.57 (d, J=8.4Hz, 1H), 7.66 (dd, J=7.7, 1.8 Hz, 1H).

With the complex challenges of chemical substances, we look forward to future research findings about Ruthenium(III) chloride

Reference£º
Patent; Biediger, Ronald J.; Dupre, Brian; Hamaker, Linda K.; Holland, George W.; Kassir, Jamal M.; Li, Wen; Market, Robert V.; Nguyen, Noel; Scott, Ian L.; Wu, Chengde; Decker, E. Radford; US2003/199692; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 50982-12-2

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Name is Dichloro(cycloocta-1,5-diene)ruthenium(II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 50982-12-2, its synthesis route is as follows.,50982-12-2

General procedure: The following common procedure was followed for the synthesesof complexes 1-5: A mixture of the ligand (0.36 mmol) and Ru(1,5-cod)Cl2(0.36 mmol) was dissolved in dry ethanol (10 ml) and the resultingmixture was refluxed for 2 h. The reaction volume was concentratedto a third of its original volume and the suspension was keptat 4 C overnight to give brick red solid which was filtered off,washed with cold ethanol and then diethyl ether. The solid wasdissolved in chloroform and excess of n-hexane was added toinduce the precipitation of the brick red solid product.

With the complex challenges of chemical substances, we look forward to future research findings about Dichloro(cycloocta-1,5-diene)ruthenium(II)

Reference£º
Article; Thangavel, Saravanan; Rajamanikandan, Ramar; Friedrich, Holger B.; Ilanchelian, Malaichamy; Omondi, Bernard; Polyhedron; vol. 107; (2016); p. 124 – 135;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI