Some tips on 172222-30-9

The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings.

172222-30-9, Benzylidenebis(tricyclohexylphosphine)dichlororuthenium is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 1 Metathesis by Ethenolysis of Methyl Oleate Catalyzed by a Type 3 Complex (FIG. 1) in an Ionic Liquid; 1 ml of 3-butyl-1,2-dimethylimidazolium bis-triflylamide with formula [BMMI]+[N(CF3SO2)2]- pre-dried overnight at 80 C., 148 mg of methyl oleate (source: Fluka, with a purity higher than 98%) and 15 mg of the complex with formula Cl2Ru(CH-o-O-iPrC6H4)PCy3 (synthesized by reacting the 1st generation Grubbs complex with formula Cl2Ru(CHC6H5)(PCy3)2 with 1-isopropoxy-2-vinylbenzene in the presence of CuCl), this corresponding to 5% molar of catalyst with respect to methyl oleate, were introduced, in an inert atmosphere of argon, into an autoclave reactor provided with an agitation system and a pressure sensor. The autoclave was then placed under vacuum and pressurized to obtain a pressure of 10 bars (1 MPa) of ethylene (origin: Alphagas, quality N25). The temperature was kept constant at 20 C. The medium was stirred at ambient temperature for 2 hours, then the excess ethylene was slowly purged by returning to atmosphere pressure at a temperature not exceeding 20 C. and the autoclave was again placed under an atmosphere of argon. The products were separated from the ionic liquid by adding 2 to 3 ml of heptane distilled over CaH2 and degassed. An aliquot (100 mul) of the extracted solution was passed through a short silica column (2 cm) eluted with diethyl ether. It was analyzed by gas phase chromatography (ZB-1 column, 100% dimethylpolysiloxane, 30 metres, helium vector gas 2 ml/min, temperature programming: 60 C. then 5 C./min to 220 C.) coupled to a mass spectrometer. The methyl oleate conversion was 95%. It was calculated using decane as an internal reference. The reaction products were composed of 1-decene (fraction A) and methyl decenoate (fraction B). The presence of 1-decene isomers was not detected. Homo-metathesis products were present in trace amounts and could not be quantified.

The synthetic route of 172222-30-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Olivier-Bourbigou, Helene; Vallee, Christophe; Hillion, Gerard; US2007/179307; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

b) A brown suspension of RuCl2(1,5-cyclooctadiene) (560 mg; 2 mmol), 0.6 ml of 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) and 1.18 g of tricyclohexylphosphine in 60 ml of isopropanol was stirred at 80 C. for 2 hours. 60 ml of toluene was added to the resulting brick-red suspension and the mixture was stirred at 80 C. for a further 90 minutes and cooled to -10 C. After addition of 0.55 ml of trimethylsilylacetylene, 10 ml of 2 M HCl solution in diethyl ether were added and the mixture was subsequently stirred for 5 minutes. The mixture was warmed while stirring to 0 C. and stirred for 45 minutes. After evaporation at 0 C. in a high vacuum, the residue was stirred with cold MeOH. The resulting violet powder was washed with cold methanol and dried under reduced pressure. Yield 1.40 g (92%).

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; Evonik Degussa GmbH; US2011/40099; (2011); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

11 g of trimethylsilyl chloride was dissolved in 30 mol of well dried tetrahydrofuran in a 300 ml flask whose inside had been substituted by nitrogen, and the obtained solution was cooled to -78 C. 100 ml of a tetrahydrofuran solution (2.0 mol/l) of cyclopentadienyl sodium was added dropwise to the above solution in a stream of nitrogen over 1 hour. The solution was stirred at -78 C. for 1 hour and returned to room temperature over 6 hours. A salt precipitated in the mixture solution was removed by filtration in a nitrogen atmosphere, and the residual solution was distilled to obtain 8 g of trimethylsilyl cyclopentadiene. 0.5 g of metal sodium was mixed with a well dried tetrahydrofuran solution in a 300 ml flask whose inside had been substituted by nitrogen, and the resulting solution was cooled to -78 C. A solution of 2.5 g of the above synthesized trimethylsilyl cyclopentadiene dissolved in 30 ml of tetrahydrofuran was added dropwise to the above solution in a stream of nitrogen over 1 hour and further heated to room temperature under agitation for 3 hours to obtain a tetrahydrofuran solution of trimethylsilyl cyclopentadienyl sodium. Separately, 5 g of dichloro(cyclooctadienyl)ruthenium was dissolved in 200 ml of well dried tetrahydrofuran in a 500 ml flask whose inside had been substituted by nitrogen. This solution was cooled to -78 C., and the above synthesized tetrahydrofuran solution of trimethylsilyl cyclopentadienyl sodium was added dropwise to the above solution in a stream of nitrogen over 1 hour. The resulting solution was stirred at -78 C. for 3 hours and returned to room temperature under agitation over 12 hours. After the solution was let pass through a neutral alumina column in an argon gas atmosphere to be purified and concentrated, it was separated and purified by a neutral alumina column again to obtain 0.9 g of bis(trimethylsilylcyclopentadienyl)ruthenium (yield rate of 13%).

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2006/240190; (2006); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

The catalyst precursor, preferably [RuCI2(COD)]m (1 eq.), 1 ,4-bis(diphenylphosphino)butane (1 .0-1 .2 eq., preferably 1 .0 eq.) and 2- quinolinylmethylamine (1.0-1 .4 eq., preferably 1.225 eq.) were dissolved in one of the above mentioned solvents, preferably cyclohexanone (10- 20 ml/g Ru-precursor, preferably 20 ml/g). The mixture was heated at 130 C for 1 hour and then cooled to ambient temperature. The solid precipitate was filtered off and washed with the same solvent that was used for the reaction. A person skilled in the art can determine the cis-/trans- isomeric ratio by NMR. The diastereomeric ratios generated by this method are usually in the range of d.r. (diastereomeric ratio) >98% towards the cis isomer. The same results can be achieved starting with [RuCI2(dmso-KS)3(dmso-KO)], [RuCI2(dmso-KS)4]or [RuCI2(bicyclo[2.2.1]hepta-2,5-diene)]m as precursor

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; SYNGENTA PARTICIPATIONS AG; LOTHSCHUETZ, Christian; SAINT-DIZIER, Alexandre Christian; WO2014/166777; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

The catalyst precursor, preferably [RuCI2(COD)]m (1 eq.) (COD = cis,cis-cycloocta-1 ,5 diene), 1 ,4-bis(diphenylphosphino)butane (1.0-1 .2 eq., preferably 1.0 eq.) and 2-picolylamine (1 .0-1.4 eq., preferably 1.225 eq.) were dissolved in one of the above mentioned solvents, preferably methyl isobutylketone (10-20 ml/g Ru-precursor, preferably 20 ml/g). The mixture was heated to reflux for 3 – 5 hours and then cooled to ambient temperature. The solid precipitate was filtered off and washed with the same solvent that was used for the reaction. A person skilled in the art can determine the cis-/trans- isomeric ratio by NMR. The diastereomeric ratios generated by this method are usually in the range of d.r. (diastereomeric ratio) >98% towards the cis isomer. The same results can be achieved starting with [RuCI2(dmso-KS)3(dmso-KO)], [RuCI2(dmso-KS)4]or [RuCI2(bicyclo[2.2.1 ]hepta- 2,5-diene)]m as precursor

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; SYNGENTA PARTICIPATIONS AG; LOTHSCHUETZ, Christian; SAINT-DIZIER, Alexandre Christian; WO2014/166777; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : Benzylidenebis(tricyclohexylphosphine)dichlororuthenium

As the rapid development of chemical substances, we look forward to future research findings about 172222-30-9

Benzylidenebis(tricyclohexylphosphine)dichlororuthenium, cas is 172222-30-9, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

In a glove box, NHC ligand precursor 23 (162 mg, .34 mmol), ruthenium precursor 5 (150 mg, .27 mmol) and KOt-Bu(Fe) (74 mg, .34 mmol) were combined in C6D6 and stirred at RT for 2.5 hours. The flask was sealed, removed from the glove box and the reaction was concentrated and purified by flash column chromatography (2.5percent – > 5percent Et2psi/Pent) to yield a brown oil. The brown oil was lyophilized from benzene to give 25 as a brown solid (66 mg, 25percent). 1H NMR (300 MHz3 CDCl3) delta 20.07 (d, J = 10.5 Hz, IH)3 8.03 (br, 2H), 7.60 (t, 1.8 Hz, IH), 6.86-6.81 (ra, 2H), 6.51 – 6.47 (m, IH), 1.81 – 1.07 (m).

As the rapid development of chemical substances, we look forward to future research findings about 172222-30-9

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; WO2007/75427; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

50982-12-2, Dichloro(cycloocta-1,5-diene)ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Dichloro(1,5-cyclooctadiene)ruthenium (4.0 g, 0.014 moles), tricyclohexylphosphine (8.4 g, 0.030 moles), degassed triethylamine (2 mL), and degassed sec-butanol (60 mL) were combined in a pressure bottle under argon. The pressure bottle was purged with hydrogen gas, pressurized to 60 psi, and the mixture heated to 80 C. for 18 hours (the bottle was repressurized as needed to maintain 60 psi hydrogen). The reaction mixture was then allowed to cool down and the hydrogen gas was vented off. Degassed methanol (60 mL) was added to the orange slurry and the filtrate decanted off via stick filtration under argon to leave an orange solid in the bottle, which was washed with degassed methanol (60 mL). Degassed toluene (60 mL) was added to the orange solid and the orange slurry cooled to 0 C. Degassed 3-chloro-3-methyl-1-butyne (1.7 mL, 0.015 moles) was added dropwise via syringe at 0 C. The orange slurry progressively turned to a maroon slurry, while gas bubbled away. The mixture was stirred at room temperature for 2 hours after addition was complete. Ligand precursor [ 2] (18 g, 0.102 moles) was then charged and the mixture was heated to 80 C. and sparged with argon for 3 days (degassed toluene was added as needed). The brown slurry was allowed to cool to room temperature and a mixture of 30 mL methanol and 10 mL of concentrated hydrochloric acid was added in air with mixing. After stirring for 15 minutes at room temperature, the two phases were allowed to separate and the methanol phase was decanted off. Trituration with methanol (2¡Á50 mL) gave a solid, which was collected on a frit and washed with more methanol (2¡Á20 mL). The brown solid was then washed with hexanes (2¡Á20 mL) and dried to give [ 8] (5.1 g, 0.085 moles) in 61% yield.

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

Reference£º
Patent; MATERIA, INC.; Pederson, Richard L.; Woertink, Jason K.; Haar, Christopher M.; Gindelberger, David E.; Schrodi, Yann; (13 pag.)US9504997; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about 203714-71-0

With the rapid development of chemical substances, we look forward to future research findings about 203714-71-0

Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II), cas is 203714-71-0, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

A dry, 1000-mL, one-necked, round-bottomed flask is equipped with a magnetic stirring bar, rubber septum and an argon inlet. The flask is charged under an argon atmosphere with a solid SIMES x HBF4 2 (35.28 mmol, 13.9 g) and dry n-hexane (400 ml_). A solution of potassium tert-amylate (21.6 ml_, 36.75 mmol) is added from a syringe and the resulting mixture is stirred under argon at room temperature for 1 h. To the resulted solution a solid Hoveyda-Grubbs 1st generation catalyst 1 (29.4 mmol, 17.6 g) is added in one portion. The flask is equipped with a reflux condenser with an argon inlet at the top and the reaction mixture is refluxed for 2 h. The contents of the flask are cooled to room temperature and solid CuCI (51.45 mmol, 5.1 g) is added slowly in three portions and the resulting mixture is refluxed for 2 h. From this point forth, all manipulations are carried out in air.; 1.11. Isolation of the product by crystallization; The reaction mixture is evaporated to dryness and re-dissolved in ethyl acetate (200 ml_). The solution is filtrated through a Buchner funnel with glass frit filled with Celite and then concentrated in vacuo. The residue is dissolved in ambient temp. 1 :10 v/v mixture of CH2CI2 and methanol (220 ml_). After concentration to ca. % of the initial volume using a rotary evaporator (room temperature) crystals are precipitated. These crystals are filtered- off on a Buchner funnel with glass frit. The crystals are washed twice with small portions of CH3OH (-20 ml_), and dried in vacuo to give pure Hoveyda 2nd catalysts 3 (25.3 mmol, 15.81 g). The filtrate after crystallization is evaporated to dryness and crystallized for the second time from CH2CI2 and methanol using the same protocol giving an additional crop of pure Hoveyda 2nd generation catalyst (1.7 mmol, 1.08 g). The total yield of pure Hoveyda-Grubbs 2nd generation catalyst 3 is 92% (27.0 mmol, 16.9 g).

With the rapid development of chemical substances, we look forward to future research findings about 203714-71-0

Reference£º
Patent; BOEHRINGER INGELHEIM INTERNATIONAL GMBH; BOEHRINGER INGELHEIM PHARMA GMBH & CO. KG; WO2007/54483; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Introduction of a new synthetic route about Dichloro(cycloocta-1,5-diene)ruthenium(II)

With the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Dichloro(cycloocta-1,5-diene)ruthenium(II), cas is 50982-12-2, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.

A nitrogen-flushed three-neck flask was charged with 65.36 g of ruthenium trichloride trihydrate, 500 mL of ethanol and 250 mL of 1,5-cyclooctadiene, and the flask contents were refluxed under heating at 85 C. for 5 hours. Following the completion of refluxing, the solution was cooled to room temperature, after which filtration was carried out. The resulting solid was washed with 500 mL of diethyl ether and dried in vacuo, yielding 70.02 g of (eta-1,5-cyclooctadiene)ruthenium(II) dichloride as a brown solid. Next, 2.81 g of this (eta-1,5-cyclooctadiene)ruthenium(II) dichloride, 6.38 g of sodium carbonate, 2.9 mL of methyl 3-oxo-4,4,4-trifluorobutanoate and 10 mL of ethanol were placed in a nitrogen-flushed three-neck flask and refluxed under heating at 85 C. for 2 hours. Following the completion of refluxing, the solution was cooled to room temperature, then alumina column chromatography (developing solvent: acetone) was carried out. The resulting solution was concentrated and dried under reduced pressure, and 3.61 g of bis(methyl-3-oxo-4,4,4-trifluorobutanato)(eta-1,5-cyclooctadiene)ruthenium(II) was obtained as a black reddish-brown liquid. The yield was 66 wt %.

With the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2012/282414; (2012); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 203714-71-0

203714-71-0 Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) 10941020, aruthenium-catalysts compound, is more and more widely used in various.

203714-71-0, Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

NHC ligand precursor 21 (9 mg, .03 mmol), KOz-Bu(F6) (6 mg, .03 mmol), and ruthenium complex 911 (13 mg, .02 mmol) were all combined in CgDbeta in a screw cap NMR tube in a glove box. The NMR tube was removed and heated at 600C for 2.5 hour in a fume hood. Conversion to catalyst 22 was determined to be 14% by proton NMR. 1H NMR (300 MHz, CDCl3) delta 17.19 (IH, s).

203714-71-0 Dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium (II) 10941020, aruthenium-catalysts compound, is more and more widely used in various.

Reference£º
Patent; MATERIA, INC.; CALIFORNIA INSTITUTE OF TECHNOLOGY; WO2007/75427; (2007); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI