Application of (S)-4-Benzylthiazolidine-2-thione

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

The ruthenium-catalysts compound, cas is 50982-12-2 name is Dichloro(cycloocta-1,5-diene)ruthenium(II), mainly used in chemical industry, its synthesis route is as follows.

A solution of (tBu2PCH2CH2)2NH (1 .0 g, 2.77 mmol) was added to [RuCl2(cod)]n (0.775 g, 2.77 mmol) and the resulting suspension stirred for 4 hours underargon. This was followed by the addition of 4-methoxyphenyl isonitrile (368 mg,2.77 mmol) and the mixture refluxed for 15 hours under argon. It was cooled to room temperature and ether (40 ml) added, and the suspension stirred for 1 hour at room temperature. It was filtered, washed with ether and dried under vacuum. Yield = 1 .44 g. X-ray quality crystals were obtained by slow diffusion of ether into a CH2CI2 solution of the compound.

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; HADEED, Gerald, S.; ABDUR-RASHID, Kamaluddin; (61 pag.)WO2018/193401; (2018); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of (R)-(+)-N,N-Dimethyl-1-ferrocenylethylamine

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

The ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II),cas is 50982-12-2, mainly used in chemical industry, its synthesis route is as follows.

Separately, 200 ml of well dried tetrahydrofuran was fed to a 500 ml flask whose inside had been substituted by argon, and 5 g of dichloro(cyclooctadienyl)ruthenium was injected into the flask and well mixed with the above tetrahydrofuran to obtain a suspension. This suspension was cooled to -78 C. in a stream of argon, and 15 ml of the above synthesized tetrahydrofuran solution of trifluoromethyl cyclopentadienyl sodium was added dropwise to the suspension over 1 hour. The reaction mixture was further stirred at -78 C. for 3 hours and returned to room temperature under agitation over 12 hours. After the reaction mixture was let pass through a neutral alumina column in a stream of argon to be purified and concentrated, it was purified again by a neutral alumina column to obtain 0.2 g of bis(trifluoromethylcyclopentadienyl)ruthenium (yield rate of 30%).

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2006/240190; (2006); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 1,3-Bisbenzyl-2-oxoimidazolidine-4,5-dicarboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 10049-08-8

The ruthenium-catalysts compound, name is Ruthenium(III) chloride,cas is 10049-08-8, mainly used in chemical industry, its synthesis route is as follows.

Step 1 To a solution of 2-(4,4-dimethyl-chroman-7-yl)-heptan-1-ol (0.27 g, 0.98 mmole, from Example 1, step 6) in a mixture of 2 mL of carbon tetrachloride, 2 mL acetonitrile and 3 mL water, containing 3-5 mg of ruthenium chloride, was added 0.85 g of sodium periodate. The mixture was stirred at room temperature for 2 hours, diluted with 10 mL of water, and pH was adjusted to 2 with 10percent hydrochloric acid. The mixture was extracted with three 10 mL portions of dichloromethane. The organic phase was dried over MgSO4, filtered and concentrated in vacuo to give a dark oil. The product was purified by flash chromatography (SiO2, gradient from 0 to 20percent ethyl acetate in hexanes) to yield 0.16 g of 2-(4,4-dimethyl-chroman-7-yl)-heptanoic acid as a pale yellow oil.

As the rapid development of chemical substances, we look forward to future research findings about 10049-08-8

Reference£º
Patent; Syntex (U.S.A.) LLC; US2003/158178; (2003); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of 50982-12-2

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

A common heterocyclic compound, the ruthenium-catalysts compound, name is Dichloro(cycloocta-1,5-diene)ruthenium(II),cas is 50982-12-2, mainly used in chemical industry, its synthesis route is as follows.

Next, 31.56 g of this (eta-1,5-cyclooctadiene)ruthenium(II) dichloride, 34.97 g of sodium carbonate, 28 mL of 2,4-pentanedione and 100 mL of N,N-dimethylformamide were placed in a nitrogen-flushed three-neck flask and stirred at 140 C. for 1 hour. Following reaction completion, the solution was cooled to room temperature, then alumina column chromatography (developing solvent: diethyl ether) was carried out. The resulting solution was concentrated, after which 120 mL of water was added and the solution was left at rest for 3 hours. The crystals that precipitated out were collected by filtration, and after being washed with water, were dried in vacuo. 46.53 g of bis(2,4-pentanedionato)(eta-1,5-cyclooctadiene)ruthenium(II) was obtained as an orangey-yellow solid. The yield was 94 wt %.

As the rapid development of chemical substances, we look forward to future research findings about 50982-12-2

Reference£º
Patent; JSR Corporation; US2012/282414; (2012); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 918870-76-5

The synthetic route of 918870-76-5 has been constantly updated, and we look forward to future research findings.

918870-76-5, Dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene][[5-[(dimethylamino)sulfonyl]-2-(1-methylethoxy-O)phenyl]methylene-C]ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a glovebox 13 (800 mg, 1.09 mmol) and AgOCN (374 mg, 2.51 mmol) were suspended in 10 ml of tetrahy-drofuran. The mixture was stirred for three hours at room temperature, and then the solvent was removed under vacuum.The residual was dissolved in dichloromethane and filtered through a short pad of silica gel using dichloromethane/diethylether (9:1) as eluent. The green solution containing complex 14 was concentrated under vacuum and the compoundwas precipitated with pentane at room temperature. The green solid was isolated by cannula filtration and washed threetimes with pentane. The solid was transferred in a glovebox and dried under argon atmosphere (744 mg, 91 % of yield).1H NMR (600.17 MHz, CD2Cl2): delta = 16.25 (br s, 1 H), 7.95 (dd, J = 8.6, 2.2, 1 H), 7.24 (d, J = 2.2, 1 H), 7.14 (br s, 4 H),6.99 (d, J = 8.6, 1 H), 4.94 (sep, J = 6.1, 1 H), 4.19 (s, 4 H), 2.27 (s, 6 H), 2.43 (s, 6 H), 2.41 (s, 12 H), 1.11 (d, J = 6.1,6 H). 13C{1H} NMR (150.91 MHz, CD2Cl2): delta= 295.12, 207.94, 155.24, 143.75, 139.94, 139.26, 135.84, 135.21, 131.02,129.94, 129.29, 121.57, 113.36, 76.88, 51.86, 38.07, 21.17, 20.78, 18.45. HRMS (ESI+), m/z: 767.19735 [M+Na]+;calculated for C35H43N5NaO599RuS: 767.19420.

The synthetic route of 918870-76-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Bergen Teknologioverf¡ãring AS; Jensen, Vidar Remi; Occhipinti, Giovanni; EP2826783; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

A mixture of (0421) [RuCl2(COD)]n (359 mg, 1.281 mmol), PPh3 (336 mg, 1.281 mmol) and ligand la (341 mg, 1.281 mmol) was stirred in THF (15 ml) at 75 C for 39 h in a KONTES pressure tube. After cooling down, the resulting brick precipitate was collected on a filter frit, washed with diethyl ether (3 >< 5 ml) and vacuum dried. Recrystallization from hot dichloromethane following layering with diethyl ether afforded analytically pure complex A-l in 29% yield (260 mg). As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role. Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Hoveyda-Grubbs 2nd generation catalyst (19mg; 0.03mmol) was added to a solution of dien 7 (100mg; 0.31mmol) and styrene (2.48mmol) in dichloroethane (5mL). The reaction mixture was heated at 80C for 5h. Then, another portion of H-G catalyst (19mg; 0.03mmol) was added and the reaction mixture was heated at 80C for additional 5h. Then, the solvent was evaporated and crude solid was purified by column chromatography on silica gel (mobile phase – 3% ethyl acetate in cyclohexane, Rf of products 0.18-0.25). In some cases, stated in each experiment, HPLC had to be used due to very close retention time of product and starting material (mobile phase – 0.5% ethyl acetate in cyclohexane).

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Korinkova, Petra; Bazgier, Vaclav; Oklestkova, Jana; Rarova, Lucie; Strnad, Miroslav; Kvasnica, Miroslav; Steroids; vol. 127; (2017); p. 46 – 55;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 301224-40-8

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

301224-40-8, (1,3-Dimesitylimidazolidin-2-ylidene)(2-isopropoxybenzylidene)ruthenium(VI) chloride is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: In a glove box, a flask was charged with Ru complex 4 or 5 and Ag salt 3. Anhydrous degassed CH2Cl2 was then added and the resulting mixture was stirred at room temperature for 3h in the dark. The solids were filtered off through a Celite layer and washed with anhydrous (2mL). The solution was diluted with anhydrous hexane (10mL) and remaining precipitated Ag salt was again filtered off. Evaporation of the solvents on a rotary vacuum evaporator (40C, 1h, 25kPa) and finally at oil pump vacuum (25C, 1h, 1kPa) gave the products 1 or 2.

The synthetic route of 301224-40-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lipovska, Pavlina; Rathouska, Lucie; ?im?nek, Ond?ej; Ho?ek, Jan; Kola?ikova, Viola; Ryba?kova, Marketa; Cva?ka, Josef; Svoboda, Martin; Kvi?ala, Jaroslav; Journal of Fluorine Chemistry; vol. 191; (2016); p. 14 – 22;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 50982-12-2

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

50982-12-2, Dichloro(cycloocta-1,5-diene)ruthenium(II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of [RuCl2(COD)]n (309 mg, 1.103 mmol), PCy3 (309 mg, 1.103 mmol) and la (294 mg, 1.103 mmol) was stirred in toluene (10 ml) at 115 C for 48 h in a KONTES pressure tube. After cooling down, the brick colored precipitate was collected on a filter frit, washed with Et20 (3 x 10 ml) and vacuum dried to afford 642 mg of the crude material. To the crude material was added CH2C12 (~ 32 ml) and the obtained mixture was brought to reflux and filtered using a Whatman syringe filter (PTFE membrane, pore size 0.45 muiotaeta). Layering the obtained red-brown solution with Et20 (125 ml) afforded 327 mg (41%) of the product as a pink-brown powder after 5 days. Elem. Anal.: Calcd for C32H55Cl2N2OPRuS (718.81): C, 53.47; H, 7.71; N, 3.90%. Found: C, 53.11; H, 8.00; N, 3.86%. 31P{1H} (162 MHz, CD2C12, r.t.): delta 24.0 (s). 1H NMR (400 MHz, CD2C12, r.t.): delta 0.09 (brs, 1H), 0.92 (brs, 2H), 1.04-1.63 (m, 15H), 1.63-2.05 (m, 9H), 2.10-2.45 (brs, 3H), 2.45-2.70 (brs, 1H), 2.83-3.28 (overlapped, 7H), 3.31-3.56 (overlapped, 6H), 3.56-3.90 (overlapped, 4H), 3.98 (t, J~ 8 Hz, 1H), 5.57 (brs, NH, 1H), 7.31 (t, J~ 7 Hz, 2H), 7.38 (t, J~ 6 Hz, 1H), 8.15 (d, J~ 7 Hz, 2H). 13C{1H} selected for the coordinated NNS ligand (100.5 MHz, CD2C12, r.t.): delta 46.6 (s, 1C), 46.8 (s, 1C), 48.3 (s, 1C), 53.9 (s, 1C, overlapped with CD2C12 peak), 54.8 (s, 1C), 60.0 (s, 1C), 60.7 (s, 1C), 61.7 (s, 1C), 128.1 (s, 2Cmeta, Ph), 129.3 (s, Cpam, Ph), 134.9 (s, 2Cortho, Ph), 138.0 (s, Cipso, Ph).

The synthetic route of 50982-12-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; LOS ALAMOS NATIONAL SECURITY, LLC; DUB, Pavel, A.; GORDON, John, Cameron; WO2015/191505; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Brief introduction of 50982-12-2

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.50982-12-2,Dichloro(cycloocta-1,5-diene)ruthenium(II),as a common compound, the synthetic route is as follows.

General procedure: The following common procedure was followed for the synthesesof complexes 1-5: A mixture of the ligand (0.36 mmol) and Ru(1,5-cod)Cl2(0.36 mmol) was dissolved in dry ethanol (10 ml) and the resultingmixture was refluxed for 2 h. The reaction volume was concentratedto a third of its original volume and the suspension was keptat 4 C overnight to give brick red solid which was filtered off,washed with cold ethanol and then diethyl ether. The solid wasdissolved in chloroform and excess of n-hexane was added toinduce the precipitation of the brick red solid product.2.3.1. [RuCl2(1,5cod) (L1)] (1)L1 (0.36 mmol, 66 mg) and Ru(1,5-cod)Cl2 (0.36 mmol,100 mg). Yield: 72% (120 mg). Mp. 220.0 C (dec. turns black withoutmelting). 1H NMR (400 MHz, CDCl3, 25 C, ppm) delta = 8.45 (s, 1H,imine CH), 8.25 (d, 1H, JH-H = 5.16 Hz, a proton of Py), 8.01-7.94(m, 2H, Py), 7.58-7.54 (m, 1H, Py), 7.82 (d, 2H, JH-H = 7.56 Hz,Ph), 7.39-7.34 (m, 3H, Ph), 4.75-4.74 (m, 2H, -CH, cod), 4.15-4.11 (m, 2H, -CH, cod), 2.74-2.57 (m, 4H, -CH2, cod), 2.20-2.14(m, 2H, -CH2, cod), 2.06-2.00 (m, 2H, -CH2, cod). 13C NMR(100 MHz, CDCl3, 25C, ppm) delta = 168.04 (imine C-H), 156.70(Py), 150.60 (Py), 149.44 (Py), 138.11 (Py), 135.94 (Py), 129.02(Ph), 128.93 (Ph), 127.88 (Ph), 127.80 (Ph), 120.81 (Ph), 92.25,91.87 (C, -CH, cod), 29.64, 29.22 (C, -CH2, cod). FT-IR (c/cm1):(cod, CC) 3038-2829 (m), (CN) 1594 (s), 1203 (s), 767 (s), 702(s). UV-Vis (dichloromethane, v/v): kmax (nm) = 229, 292, 345,439. HR-Mass (TOF MS ES+) C20H22N2Ru calculated: 393.0810,found: 393.0815. Anal. Calc. for C20H22Cl2N2Ru: C, 51.95; H, 4.80;N, 6.06. Found: C, 51.87; H, 5.10; N, 6.33.

As the paragraph descriping shows that 50982-12-2 is playing an increasingly important role.

Reference£º
Article; Thangavel, Saravanan; Rajamanikandan, Ramar; Friedrich, Holger B.; Ilanchelian, Malaichamy; Omondi, Bernard; Polyhedron; vol. 107; (2016); p. 124 – 135;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI