The important role of (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Name is (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 246047-72-3, its synthesis route is as follows.,246047-72-3

Example 4 – Synthesis of the complex 3 according to the invention The commercially available complex G (1.0 g, 1.18 mmol) was placed in a flask, to which methylene chloride was added (24 ml). This was followed by adding the compound of the formula: (141 mg, 1.17 mmol) and tricyclohexylphosphine (330 mg, 1.18 mmol). The resulting solution was stirred at a temperature of 40C for 5 hours. The reaction mixture was introduced at the top of a chromatographic column packed with silica gel (eluent: ethyl acetate/cyclohexane, 0 to 10 vol. ). After evaporating the solvents, the complex 3 was obtained as a green solid (797 mg, 82% yield). The NMR data are consistent with Example 3.

With the complex challenges of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Patent; APEIRON SYNTHESIS S.A.; SKOWERSKI, Krzysztof; BIENIEK, Micha?; WO2014/16422; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 15529-49-4

15529-49-4 is used more and more widely, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether.

15529-49-4 is used more and more widely, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 246047-72-3

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

General procedure: To a Schlenk flask charged with Grubbs? catalyst 2 (0.42 g,0.50 mmol) and CuCl (0.05 g, 0.50 mmol), compound 14 (or 15, 16)(0.6 mmol) in 10 mL dry dichloromethane was added at room temperature under N2. The resulting mixture was stirred for 40 min at 40 C. After being cooled to room temperature, the reaction mixturewas filtered and the clear filtrate was collected. The solvent from the filtrate was evaporated under vacuum to give a residue. The residue was purified by silica gel chromatography (CH2Cl2:ethyl acetate 2:1 or pentanes: ethyl acetate 3:2 or 1:1) to givethe desired product as a green crystalline solid.

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Article; Zhang, Yiran; Shao, Mingbo; Zhang, Huizhu; Li, Yuqing; Liu, Dongyu; Cheng, Yu; Liu, Guiyan; Wang, Jianhui; Journal of Organometallic Chemistry; vol. 756; (2014); p. 1 – 9;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

EXAMPLE B2Preparation of [(Cl)2Ru(Pphenyl3) (ligand L2)], K2 272.5 mg (0.284 mmol) of dichlorotris(triphenylphosphine)ruthenium(II) and 160.0 mg (0.296 mmol) of ligand L2 are placed in a 10 ml Schlenk tube and admixed with 6.5 ml of dry toluene under argon. The dark suspension is stirred overnight at room temperature, resulting in a colour change to orange-red. After addition of 4 ml of dry pentane, the stirrer is switched off and the supernatant orange solution is filtered off with suction from the orange solid. The solid is washed five times with 4 ml each time of pentane and dried in a high vacuum. This gives 244 mg (88% of theory) of the title compound as an orange powder. 31P-NMR (C6D6, 121.5 MHz, ppm): 49.7 (d, J=40), 61.2 (d, J=40).

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; Spindler, Felix; Nettekoven, Ulrike; Perseghini, Mauro; US2009/105481; (2009); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

To Hpytol (0.12 g,0.5 mmol) in methanol (10 mL), [RuCl2(PPh3)3] (0.23 g, 0.25 mmol) in methanol (5 mL) was added. The reaction was carried out in presence of Et3N (0.05 mL, 0.5 mmol). The mixture was heated under reflux for 1.5 h, during which a deep red precipitate was obtained. It was filtered off, washed with methanol and ether, then dried in vacuo, Yield, 88%; mp 300 C. LM inCH2Cl2 3 U1 cm2 mol1. Elemental Anal. Calcd. ForC66H60N4O4RuP2: C, 69.7; H, 5.3; N, 4.9%. Found: C, 69.5; H, 5.0; N,4.8%. IR (KBr, cm1): n (OeH) 3407(m,b), n (C]N) 1625, n (CeO)1285(s), n(PPh3) 1091(s), n(RueO) 522(m), n (RueN) 460 (m). 1HNMR (DMSO-d6,d/ppm): 8.57 (HC]N), 1H, s); 8.1(H6), 1H, s);7.33e7.44 (Ph-H, 4H, m); 5.07 (CH2, 2H, s); 4.37 (OHCH2OH, 1H, s);2.3 (CH3, 3H, s).

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Elsayed, Shadia A.; Noufal, Aya M.; El-Hendawy, Ahmed M.; Journal of Molecular Structure; vol. 1144; (2017); p. 120 – 128;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 246047-72-3

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

1-(isopropylsulfanyl)-2-vinylbenzene (25.0 mg, 0.14 mmol), cuprous chloride (16.7 mg, 0.17 mmol) and (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium (119 mg, 0.14 mmol) were dissolved in 6 mL dichloromethane in a 10 mL round-bottomed flask under dry nitrogen topped with a reflux condenser. The reaction mixture was refluxed for 4.5 h. The resulting mixture was evaporated to dryness. The crude product was purified by chromatography on silica gel using 7:3 n-hexane and acetone as eluent to give a teal solid (48.0 mg, 55%). Two additional byproducts were separated by chromatography, but only one was fully characterized by NMR analysis: the trans-catalyst isomer green solid (8.1 mg, 9%) and additional green solid (14.2 mg). Both spontaneously converted with time to product 1A according to NMR analysis. Crystals suitable for X-ray analysis were obtained by laying hexanes over a solution of 1A in dichloromethane for few days at -18 C. [0056] 1H NMR (500 MHz, CD2Cl2): delta 0.76 (d, J=6.5 Hz, 3H), 1.41 (d, J=7.4 Hz, 3H), 1.56 (s, 3H), 2.16 (s, 3H), 2.37 (s, 3H), 2.44 (s, 3H), 2.57 (s, 3H), 2.64 (s, 3H), 3.58 (m, 1H), 3.80 (m, 1H), 3.88 (m, 1H), 4.00 (m, 1H), 4.11 (m, 1H), 5.96 (bs, 1H), 6.79 (d, J=7.5 Hz, 1H), 6.88 (bs, 1H), 7.04 (bs, 1H), 7.12 (bs, 1H), 7.17 (t, J=6.4 Hz, 1H), 7.46 (m, 2H), 17.14 (s, 1H) ppm. 13C NMR (125 MHz, CDCl3): delta 17.7, 18.7, 19.7, 20.3, 20.9, 21.0, 21.3, 24.2, 39.0, 51.4, 51.6, 123.7, 128.6, 129.4, 129.6, 129.7, 129.8, 130.7, 131.7, 135.0, 135.4, 135.6, 137.3, 137.7, 138.5, 140.3, 140.4, 156.6, 213.6, 285.6 ppm. APCI-MS m/z (M-Cl)+: 607.1 (Calc. 607.15).

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Patent; LEMCOFF, N. Gabriel; BEN-ASULY, Amos; US2014/155511; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: The amine (4-CH3-pip, 4-CH2Ph-pip or 4-CH2(OH)-pip; 0.34 mmol) was added to a solution of [RuCl2(PPh3)3] (0.26 mmol; 0.25 g) in acetone (40 mL). The resulting dark green solution was stirred for 2 h at RT. A green precipitate was formed, filtered, washed with methanol and ethyl ether, and then dried in vacuum. Complex 1 (R = H): 75% yield. Analytical data for RuCl2P2NC42H43 are 63.40C, 5.45H, and 1.76% N; found 63.59C, 5.47H, and 1.88% N. FTIR in CsI: 322 cm-1 for nu(Ru-Cl); 3228 cm-1 for nu(N-H). 31P{1H} NMR in CDCl3: 62.7 ppm (s). Complex 2 (R = Ph): 58% yield. Analytical data for RuCl2P2NC48H47 are 66.13C, 5.43H, and 1.61% N; found 66.41C, 5.37H, and 1.72% N. FTIR in CsI: 320 cm-1 for nu(Ru-Cl); 3257 cm-1 for nu(N-H). 31P{1H} NMR in CDCl3: 62.7 ppm (s).

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chaves, Henrique K.; Ferraz, Camila P.; Carvalho Jr., Valdemiro P.; Lima-Neto, Benedito S.; Journal of Molecular Catalysis A: Chemical; vol. 385; (2014); p. 46 – 53;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-dicyclohexylphosphine aniline,1.6 mmol of m-phenylbenzyl alcohol, 1 mmol of bis-diphenylphosphine butane, 1 mmol of RuCl2 (PPh3) 3, 1 mmol of triethylamine and 20 ml of toluene were added and the mixture was heated at 110 C. for 18 h under a nitrogen atmosphere.After cooling and filtering, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 10 in a yield of 84%.

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A methanol (10ml) solution containing the appropriate N-S pro-ligand and triethylamine was refluxed under argon for 15min and then the complex [RuCl2(PPh3)3] was added. The resulting brown suspension was refluxed for 3h, to afford a yellow suspension. After cooling, the yellow solid was collected by filtration, washed with methanol (3¡Á5ml), and dried under reduced pressure. 2.6.2 [Ru(mcbtz)2(PPh3)2] (2) Hmcbtz (0.035 g – 2.0 * 10-4 mol); NEt3 (30 mul – 2.0 * 10-4 mol), and [RuCl2(PPh3)3] (0.095 g – 9.9 * 10-5 mol). Yield: 65 mg – 68.5%. 31P{1H} NMR (81 MHz, CDCl3) 52.2 ppm (s). 1H NMR (200 MHz, CDCl3), delta/ppm 8.0-6.5 (m, 30H Ph – PPh3 and 8H Ph – mcbtz-). Anal.exp. (calc. for C50H38N2P2RuS4) C-62.3 (62.7); H, 4.0 (4.0); N, 2.8 (2.9); S, 12.8(13.4).

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Appelt, Patricia; Fagundes, Francisco D.; Facchin, Gianella; Gabriela Kramer; Back, Davi F.; Cunha, Mario A.A.; Sandrino, Bianca; Wohnrath, Karen; De Araujo, Marcio P.; Inorganica Chimica Acta; vol. 436; (2015); p. 152 – 158;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Share a compound : 246047-72-3

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

(1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium, cas is 246047-72-3, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,246047-72-3

Example 5 Synthesis of the Complex 4 According to the Invention [0081] The commercially available complex G (200 mg, 0.24 mmol) was placed in a flask, to which methylene chloride was added (6 ml). This was followed by adding the compound of the formula: (78 mg, 0.47 mmol) and tricyclohexylphosphine (132 mg, 0.47 mmol). The resulting solution was stirred at a temperature of 40 C. for 1 hour. The reaction mixture was introduced at the top of a chromatographic column packed with silica gel (eluent: ethyl acetate/cyclohexane, 0 to 10 vol. %). After evaporating the solvents, the complex 4 was obtained as a brown solid (104 mg, 50% yield). [0082] 1H NMR (500 MHz, CD2Cl2) delta ppm: 16.42 (s, 1H), 8.00 (dd, J=9.3, 2.7 Hz, 1H), 7.53 (d, J=2.7 Hz, 1H), 7.12 (s, 1H), 7.06 (s, 2H), 6.69 (d, J=9.3 Hz, 1H), 6.22 (s, 1H), 4.07-4.03 (m, 1H), 3.88-3.77 (m, 2H), 3.73-3.67 (m, 1H), 2.64 (s, 3H), 2.56 (s, 3H), 2.51 (s, 3H), 2.39 (s, 3H), 2.27 (s, 3H), 1.64-1.50 (m, 13H), 1.46 (m, 3H), 1.12-0.75 (m, 20H). 13C NMR: (125 MHz, CD2Cl2) delta ppm: 282.23 (d), 220.27, 219.73, 184.63 (d), 145.82, 139.23 (d), 139.08, 138.89, 137.46, 136.76, 136.69, 134.24, 134.00, 130.55, 130.36, 129.41 (d), 125.78, 117.59, 115.27, 52.14 (d), 51.63 (d), 34.52, 32.77, 32.64, 29.40, 28.91, 28.00 (m), 26.90 (d), 22.73, 21.34, 21.01, 19.41, 18.63, 18.53, 17.10, 14.21.

With the rapid development of chemical substances, we look forward to future research findings about (1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphosphine)ruthenium

Reference£º
Patent; Skowerski, Krzysztof; Bieniek, Michal; US2015/158896; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI