New learning discoveries about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline,2 mmol of benzyl alcohol, 1 mmol of bisdiphenylphosphinemethane, 1 mmol of RuCl2 (PPh3) 3,2 mmol of triethylamine, 20 ml of toluene, heating at 110 C. for 12 h under a nitrogen atmosphere, cooling,The resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 1 in a yield of 89%.

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about 15529-49-4,belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to ruthenium-catalysts compound, name is Dichlorotris(triphenylphosphino)ruthenium (II), and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether.

With the complex challenges of chemical substances, we look forward to future research findings about 15529-49-4,belong ruthenium-catalysts compound

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

A mixture of [RuCl2(PPh3)3] (166.8 mg, 0.1740 mmol) and amide-LH2 (68.8 mg, 0.168 mmol) in dichloromethane (10 mL) was stirred for 16 h at room temperature. After removal of the solvent, recrystallization from THF-hexane (5 mL/15 mL) afforded 2b¡¤2THF¡¤hexane as red crystals. The thoroughly dried sample was found to lose the solvating molecules on the basis of 1H NMR spectroscopy and combustion analysis. Yield: 156.8 mg (0.07088 mmol, 84%). 1H NMR (CDCl3): delta 1.18 (s, 36H, CMe3), 6.91 (t, 24H, J = 7.5, PPh3), 7.04 (d, 4H, 4JHH = 2.2, pyrazole CH), 7.13 (t, 12H, JHH = 7.0, PPh3), 7.21 (d, 4H, 3JHH = 7.7, 3- and 5-C5H3N), 7.30-7.34 (m, 24H, PPh3), 7.59 (t, 2H, 3JHH = 8.0, 4-C5H3N), 10.33 (br s, 4H, NH), 12.41 (br d, 4H, 4JHH = 2.4, NH). 31P{1H} NMR (CDCl3): delta 35.3 (s). IR (KBr): 1687 cm-1 (C=O). Anal. Calc. for C114H114Cl4N14O4P4Ru2: C, 61.90; H, 5.19; N, 8.86. Found: C, 62.18; H, 5.44; N, 8.51%.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Nakahara, Yoshiko; Toda, Tatsuro; Kuwata, Shigeki; Polyhedron; vol. 143; (2018); p. 105 – 110;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO67,mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

(PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1-t-butyl-1-phenyl-prop-2-yn-1-ol (compound B, 1.5 eq., 0.17 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.48 g (Yield: 92 %). The product was characterized by NMR spectra 31P.31P NMR (121.49 MHz, CDCI3): 628.76.Example 4: Synthesis of (PPh3)2CI2Ru(3-naphtyl-inden-1-ylidene)

With the rapid development of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diethylphosphine aniline,1.3 mmol of o-methoxybenzyl alcohol, 1 mmol2-dicyclohexylphosphine oxide, 1 mmol RuCl2 (PPh3) 3, 1.1 mmol potassium hydroxide, 20 ml benzene and heating at a temperature of 100 C for 18 h under a nitrogen atmosphere,After cooling and filtering, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 15 in a yield of 80%., 15529-49-4

The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

With the synthetic route has been constantly updated, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO295,mainly used in chemical industry, its synthesis route is as follows.,15529-49-4

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diisopropylphosphineaniline,1.8 mmol of m-chlorobenzyl alcohol, 1 mmol of o-dicyclohexylphosphine benzene, 1 mmol of RuCl2 (PPh3) 3, 1.2 mmol of sodium hydroxide, 20 ml of dioxane and heating at 110 C. for 12 h under a nitrogen atmosphere, After filtration, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 12 in a yield of 82%.

With the synthetic route has been constantly updated, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II),belong ruthenium-catalysts compound

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.

Example 9: Dichloro[2-(diphenylphosphino)-N-(2-(methylthio)benzyl)ethanamine]ruthenium(ll) (9) Under argon NaBH4 (0.13 g, 3.47 mmol) is added to a solution of 2-(diphenylphosphino)-N- (2-(methylthio)benzylidene)ethanamine (0.42 g, 1.16 mmol) in ethanol (7 ml). After stirring for 20 h at 80 C the reaction mixture is cooled to room temperature and DCM (10 ml) is added, followed by saturated aqueous NH4Cl-solution. The phases were separated and 5 the organic phase is washed twice with water and once with brine. The organic phase is dried over MgSO4, filtered and concentrated under vacuo. Ligand 2-(diphenylphosphino)- N-(2-(methylthio)benzyl)ethanamine is obtained as a yellow liquid (0.36 g, 86%). Analytical data: 1H-NMR (400 MHz, CDCl3): 7.76 (m, 1H), 7.44 (m, 4H), 7.34 (m, 6H), 7.24 (m, 2H), 7.12 (m, 1H), 3.86 (s, 2H), 2.81 (m, 2H), 2.49 (s, 3H), 2.34 (m, 2H), 1.75 (bs, 1H). 13C-NMR (400 MHz, CDCl3): 138.89, 138.25, 137.70, 133.13, 129.29, 128.95, 128.82, 128.05, 126.09, 125.31, 51.88, 46.43, 29.48, 16.17. 31P-NMR (500 MHz, CDCl3): -20.60 (s, IP). GC/MS: 350 (16%, [M-15]+), 318 (40%), 200 (26%), 183 (32%), 166 (11%), 152 (19%), 137 (100%), 121 (33%), 15 108 (36%), 91 (25%), 77 (13%), 45 (28%). Under argon dichlorotris(triphenylphosphine)ruthenium(ll) (0.94 g, 0.99 mmol) is added to a solution of 2-(diphenylphosphino)-N-(2-(methylthio)benzyl)ethanamine (0.36 g, 0.99 mmol) in toluene (20 ml). After stirring for 19 h at 110 C the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this suspension 20 hexane (20 ml) is added. After stirring for 15 min the suspension is filtered and washed with hexane (4 ml) and diethyl ether (2 x 4 ml). The light-brown filter cake is dried under vacuo for 19 h and then suspended in diethyl ether (5 ml). After stirring for 15 min the suspension is filtered, washed with diethyl ether (3 x 1 ml) and the filter cake is dried under vacuo. Complex 9 is obtained as a light-brown solid (0.76 g, 96%). Analytical data: 1H-NMR (400 MHz, CDCl3): 7.80 (m, 6H), 7.69 (m, 1H), 7.47 (m, 3H), 7.31-7.01 (m, 17H), 6.88 (dt, 7=2.02, 7.58, 1H), 7.18 (d, 7=7.33, 1H), 5.48 (bs, 1H), 5.23 (d, 7=12.63, 1H), 4.11 (m, 1H), 3.89 (m, 1H), 3.00 (m, 1H), 2.07 (m, 1H), 1.12 (m, 1H), 1.08 (s, 3H). 31P-NMR (500 M Hz, CDCl3): 49.83 (d, 7=27.74, 1P), 37.96 (d, 7=27.74, 1P). Anal, calcd. for C40H39Cl2NP2R11S: C, 60.07 %; H, 4.92 %; N, 1.75 %. Found : C, 60.36 %; H, 4.79 %; N, 1.47 %.

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; WO2015/110515; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (0.53 g, 0.55 mmol) is added to a solution of 2-(diphenylphosphino)-N-(2-(methylthio)benzylidene)ethanamine (0.20 g, 0.55 mmol) in toluene (15 ml). After stirring for 20 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension hexane (20 ml) is added. After stirring for 15 min the suspension is filtered and washed with hexane (4 ml). The red filter cake is dried under vacuo for 19 h and then suspended in diethyl ether (6 ml). The suspension is filtered, washed with diethyl ether (4¡Á4 ml) and the filter cake is dried under vacuo. Complex 8 is obtained as a light-red solid (0.29 g, 67%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.78 (d, J=8.84, 1H), 8.33 (m, 1H), 7.70 (m, 3H), 7.54-7.06 (m, 25H), 4.59 (m, 1H), 4.53 (m, 1H), 2.55 (m, 2H), 1.83 (d, J=2.53, 3H). 31P-NMR (500 MHz, CDCl3): 40.62 (d, J=32.27, 1P), 36.72 (d, J=32.37, 1P). MS (ESI): 797.18 (62%, M+), 762.12 (100%, [M-Cl]+).

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 15529-49-4

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

A mixture of HL1 (80mg, 0.20mmol), triethylamine (20mg, 0.20mmol) and 1[Ru(PPh3)3Cl2] (192mg, 0.20mmol) were stirred in tetrahydrofuran (20mL) for 6h at room temperature, during which the color of solution changed from brown to dark red. After removal of solvents in vacuo, dichloromethane (20mL) was added and the solution was filtered. The filtrate was concentrated and the residue was washed with diethyl ether (5mL¡Á2) and hexane (5mL¡Á2) to give the desired product. Recrystallization from dichloromethane/hexane (1:3) afforded dark red block crystals of [Ru(L1)(PPh3)2Cl] (1) suitable for X-ray diffraction in three days. Yield: 140mg, 66% (based on ruthenium). IR (KBr disc, cm-1): nuC=N 1568 (m), nuC-O 1304 (s), nuC-S 744 (w), nuPPh3 1433(m), 1091(s) and 694 (w), nuC-Br 564 and 529 (s); 31P NMR (CDCl3, 162MHz): delta 17.0 (s, PPh3) ppm. 1H NMR (CDCl3, 400MHz): delta 9.82 (s, 1H, CH=N), 7.91-7.52 (m, 30H, PPh3), 7.21-7.10 (m, 2H, Ar-H), 6.35-6.20 (m, 4H, Ar-H), 2.17 (s, 3H, SCH3) ppm. MS (FAB): m/z 1061 [M+], 1026 [M+-Cl], 799 [M+-PPh3], 537 [M+-2PPh3], 513 [Ru(L1)]+. Anal. Calc. for C50H40NOP2ClBr2SRu: C, 56.59; H, 3.80; N, 1.32%. Found: C, 56.54; H, 3.83; N, 1.36%.

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

Reference£º
Article; Ji, Jiao; Chen, Xin; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 494; (2019); p. 105 – 111;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI