Brief introduction of 15529-49-4

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

Example 6: Dichloro[(N-(2-(diphenylphosphino)benzylidene)-2-(ethylthio)ethanamine)- (triphenyl-phosphine)]-ruthenium(ll) (6): Under argon a solution of 2-(ethylthio)ethanamine (0.36 g, 3.44 mmol) in THF (3 ml) is added to a solution of 2-(diphenylphosphino)benzaldehyde (1.00 g, 3.44 mmol) in THF (10 ml). After stirring for 12 h at 72 C the reaction mixture is cooled to 0 C, DCM (3 ml) is added and the solvents are evaporated under vacuo. SNP-ligand N-(2- (diphenylphosphino)benzylidene)-2-(ethylthio)ethan-amine is obtained as an orange solid (1.20 g, 92%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.92 (d, 7=4.80, 1H), 8.00 (m, 1H), 7.41 (m, 1H), 7.38-7.28 (m, 11H), 6.91 (m, 1H), 3.70 (dt, 7=1.26, 7.07, 2H), 2.62 (t, 7=7.33, 2H), 2.50 (q, 7=7.33, 2H), 1.23 (t, 7=7.33, 3H). 13C-NMR (400 MHz, CDCl3): 161.12, 139.67, 137.93, 136.96, 136.87, 134.42, 133.77, 130.74, 129.28, 129.01, 128.13, 61.64, 32.56, 26.49, 15.28. 31P-NMR (500 MHz, CDCl3): -13.55 (s, IP). GC/MS: 377 (6%, M+), 348 (54%, [M-29]+), 288 (100%), 226 (20%), 208 (14%), 183 (28%), 165 (14%), 107 (11%), 89 (34%), 61 (14%). Under argon dichlorotris(triphenylphosphine)ruthenium(ll) (1.52 g, 1.58 mmol) is added to a solution of N-(2-(diphenylphosphino)benzylidene)-2-(ethylthio)ethanamine (0.60 g, 1.58 mmol) in toluene (13 ml). After stirring for 19 h at 110 C the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension DCM (20 ml) is added. After stirring for 15 min the suspension is filtered and dried under vacuo. Complex 6 is obtained as a red solid (0.88 g, 69%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.80 (d, 7=8.84, 1H), 7.56-6.81 (m, 29H), 6.35 (m, 2H), 4.60 (m, 1H), 4.20 (m, 1H), 3.03 (m, 2H), 2.29 (m, 1H), 0.92 (t, 7=7.33, 3H). 31P-NMR (500 MHz, CDCl3): 45.68 (d, 7=30.23, 1P), 29.60 (d, 7=30.23, IP). MS (ESI): 811.10 (40%, M+), 776.12 (100%, [M-Cl]+). Anal, calcd. for C41H39Cl2NP2RUS: C, 60.66 %; H, 4.84 %; N, 1.73 %. Found: C, 60.85 %; H, 4.90 %; N, 1.64 %.

15529-49-4, As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; WO2015/110515; (2015); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Diphosphine ligand (2.0 mmol) was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of RuCl2(PPh3)3 (1.0 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Article; Al-Noaimi, Mousa; Warad, Ismail; Abdel-Rahman, Obadah S.; Awwadi, Firas F.; Haddad, Salim F.; Hadda, Taibi B.; Polyhedron; vol. 62; (2013); p. 110 – 119;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Downstream synthetic route of 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

Compound 10 (628.5 mg, 1.0 mmol) and degassed morpholine (15 mL) were placed in a 100-mL Young-Schlenk container substituted with argon gas. Thereafter, the Young-Schlenk container was placed in an oil bath, and heated to 120 C. while stirring the components in the Young-Schlenk container, thereby causing a reaction. The progress of the reaction was confirmed by TLC, and the heating was stopped after two hours. Subsequently, the morpholine in the reaction mixture restored to room temperature (25 C.) was removed after collection with a liquid nitrogen trap under reduced pressure (0.1 to 2 mmHg). At this time, the reaction mixture was sufficiently stirred, and the Young-Schlenk container was immersed in water at room temperature (25 C.) to prevent cooling of the Young-Schlenk container by the heat of vaporization. (0255) After sufficiently removing the morpholine, dichlorotris(triphenylphosphino)ruthenium (II) (958.8 mg, 1.0 mmol) and dehydrated toluene (20 mL) were added while introducing argon gas into the container, and the mixture was heated to 110 C. using an oil bath, thereby causing a reaction. The heating was stopped after two hours, and the reaction mixture was restored to room temperature (25 C.). (0256) Subsequently, dehydrated hexane (40 mL) was added to the reaction mixture in an argon gas atmosphere. Thereafter, the whole mixture, including the hexane layer and the toluene layer, in the Young-Schlenk container was stirred and completely mixed. After leaving the mixture unattended for an hour, the generated purple substance was filtered out in an argon atmosphere while being washed with dehydrated diethylether, thereby obtaining a crude product. (0257) Subsequently, the resulting crude product was subjected to column chromatography (developing solvent: chloroform/THF=10/1) in which silica gels were accumulated to about 10 cm, thereby removing a compound with high polarity. The effluent was collected to a flask and the collection was continued until the color of the purple liquid was slightly diluted. After this operation, the solution collected in the recovery flask was rapidly concentrated by an evaporator, thereby obtaining 563.7 mg (0.73 mmol, 73%) of substantially pure Compound 2f (RUPCY3) as a purple substance. (0258) The spectral data of Compound 2f (RUPCY3) is shown below. (0259) 1H NMR (600 MHz, CDCl3): delta 8.12 (d, 2H, J=8.2 Hz, C12H6N2), 7.86 (d, 2H, J=8.2 Hz, C12H6N2), 7.80 (s, 2H, C12H6N2), 4.05 (d, 4H, J 35=7.6 Hz, PCH2), 2.42-2.51 (br, 4H, C6H11), 2.31 (d, 4H, J=11.0 Hz C6H11), 2.12 (d, 4H, J=12.4 Hz, C6H11), 1.61-1.94 (m, 20H, C6H11), 1.18-1.37 (m, 12H, C6H11). 13C NMR (151 MHz, CDCl3): delta 163.6, 149.3, 132.6, 128.6, 125.3, 121.8, 41.4, (d, 1JPC=23.1 Hz) 36.6 (t, 1JPC=7.2 Hz), 30.7, 29.4, 27.8, 27.6, 26.4. 31P{1H} NMR (243 MHz, CDCl3): delta 56.8. HRMS (ESI, (M-Cl)+) Calcd for C38H54ClN2P2Ru+: 737.2494. Found m/z=737.2483. (0260) FIG. 2 shows the result of an X-ray single crystal structural analysis (Oak Ridge Thermal Ellipsoid Plot) of Compound 2f., 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; National University Corporation Nagoya University; Saito, Susumu; Noyori, Ryoji; Miura, Takashi; Naruto, Masayuki; Iida, Kazuki; Takada, Yuki; Toda, Katsuaki; Nimura, Sota; Agrawal, Santosh; Lee, Sunkook; (42 pag.)US9463451; (2016); B2;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Extracurricular laboratory: Synthetic route of 15529-49-4

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4, it is a common heterocyclic compound, the ruthenium-catalysts compound, its synthesis route is as follows.,15529-49-4

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (1.52 g, 1.58 mmol) is added to a solution of N-(2-(diphenylphosphino)benzylidene)-2-(ethylthio)ethanamine (0.60 g, 1.58 mmol) in toluene (13 ml). After stirring for 19 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this red suspension DCM (20 ml) is added. After stirring for 15 min the suspension is filtered and dried under vacuo. Complex 6 is obtained as a red solid (0.88 g, 69%). Analytical data: 1H-NMR (400 MHz, CDCl3): 8.80 (d, J=8.84, 1H), 7.56-6.81 (m, 29H), 6.35 (m, 2H), 4.60 (m, 1H), 4.20 (m, 1H), 3.03 (m, 2H), 2.29 (m, 1H), 0.92 (t, J=7.33, 3H). 31P-NMR (500 MHz, CDCl3): 45.68 (d, J=30.23, 1P), 29.60 (d, J=30.23, 1P). MS (ESI): 811.10 (40%, M+), 776.12 (100%, [M-Cl]+). Anal. calcd. for C41H39Cl2NP2RuS: C, 60.66%; H, 4.84%; N, 1.73%. Found: C, 60.85%; H, 4.90%; N, 1.64%

As the rapid development of chemical substances, we look forward to future research findings about 15529-49-4

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Simple exploration of 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),as a common compound, the synthetic route is as follows.

General procedure: 1c (154 mg, 519 lmol) and [RuCl2(PPh3)3] (498 mg,519 lmol) were dissolved in CHCl3 (3 mL). The orange solutionwas stirred for 10 min at room temperature and then filteredthrough Celite. After four days, orange crystals, suitable for single-crystal X-ray diffraction, were obtained by vapor diffusion ofEt2O into the filtrate. The supernatant was decanted, the solidwas washed with Et2O (2 mL) and dried in vacuo. Yield: 312 mg(343 lmol, 66%).

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Gericke, Robert; Wagler, Joerg; Polyhedron; vol. 125; (2017); p. 57 – 67;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diphenylphosphineaniline,1.1 mmol of p-methylbenzyl alcohol, 1 mmol of 2-diphenylphosphinophenyl ether, 1 mmol of RuCl2 (PPh3) 3, 1.4 mmol of triethylamine and 20 ml of dioxane were added and the mixture was heated at 110 C for 12 h under a nitrogen atmosphere.After cooling and filtering, the resulting solid was recrystallized from a mixed solvent of CH 2 Cl 2 and petroleum ether to give product 14 in a yield of 86%.

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Analyzing the synthesis route of 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A 50 ml three-necked flask equipped with a stirring reflux device was charged with 1 mmol of 2-diethylphosphine aniline,1.6 mmol of m-methylbenzyl alcohol, 1 mmol of 1,1′-dimethylphosphine ferrocene, 1 mmol of RuCl2 (PPh3) 3, 1.5 mmol of triethylamine and 20 ml of toluene at a temperature of 110 C. for 20 h under a nitrogen atmosphereAfter cooling, filtration and recrystallization of the resulting solid from a mixed solvent of CH 2 Cl 2 and petroleum ether, product 18 was obtained in a yield of 83%., 15529-49-4

As the paragraph descriping shows that 15529-49-4 is playing an increasingly important role.

Reference£º
Patent; Luoyang Normal College; Li Hongmei; Xu Chen; Zu Enpu; Xiao Zhiqiang; Han Xin; (12 pag.)CN104804048; (2017); B;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,15529-49-4

under an inert atmosphere,0.48 g (PPh3)3RuCl2 (0.5 mmol) and 0.14 g of o-Ph2PC6H4NH2 (0.5 mmol) were weighed and placed in a Schlenk bottle (100 mL) containing about 40 mL of toluene, and heated to 70 C in a sealed state. After reacting overnight, the reaction solution was cooled to room temperature, collected by filtration, and the resulting precipitate was washed with n-hexane, dried under reduced pressure, and weighed 0.31 g (yield 87%) to give intermediate i[(PPh3)(o-Ph2PC6H4NH2) RuCl2]2

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Patent; Chizhou College; Fang Xiaolong; Wang Xin; Duan Ning; (17 pag.)CN110003283; (2019); A;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: The amine (4-CH3-pip, 4-CH2Ph-pip or 4-CH2(OH)-pip;0.34 mmol) was added to a solution of [RuCl2(PPh3)3] (0.26 mmol;0.25 g) in acetone (40 mL). The resulting dark green solution wasstirred for 2 h at RT. A green precipitate was formed, filtered,washed with methanol and ethyl ether, and then dried in vacuum.

15529-49-4, 15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Chaves, Henrique K.; Ferraz, Camila P.; Carvalho Jr., Valdemiro P.; Lima-Neto, Benedito S.; Journal of Molecular Catalysis A: Chemical; vol. 385; (2014); p. 46 – 53;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a round-bottomed flask with a stir bar was placed with [Ru(PPh3)3Cl2] (868 mg, 2.0 mmol) under the nitrogen. Pre-dried THF(10 mL) was added and the resulting mixture was stirred at room temperature. Then salen-enH2 (536 mg, 2.0 mmol) and a little excess of Et3N (252 mg, 2.5 mmol) in THF (5 mL) were added. The reaction mixture was stirred at room temperature overnight. After removal of solvents, CH2Cl2 (15 mL) was added and the solution was filtered through cilite. The filtrate was concentrated and the residue was washed with Et2O (5mL 2) and hexane (5 mL 2) to give the desired product. Recrystallization from CH2Cl2/Et2O (1:2) afforded green block-shaped crystals of [RuCl(PPh3)(salen)] (3) suitable for X-ray diffraction in three days. Yield: 1011 mg, 76% (based on Ru).

15529-49-4, The synthetic route of 15529-49-4 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Tang, Li-Hua; Wu, Fule; Lin, Hui; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 477; (2018); p. 212 – 218;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI