Downstream synthetic route of Dichlorotris(triphenylphosphino)ruthenium (II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

General procedure: Synthesis of the ruthenium(II) Schiff base complexes (2a-d) was accomplished according to the following procedure: To a solution of Schiff base 1a-d in methanol was added dropwise a solution of NaOH in methanol and the reaction mixture was stirred for 2hat room temperature. The deprotonated ligand mixture was transferred by cannula to a 50-mL three-necked flask fitted with a reflux condenser containing the [RuCl2(PPh3)3] precursor, stirred mixture was refluxed for 4h. A yellow precipitate was then filtered and washed with methanol and ethyl ether and then dried in a vacuum.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Article; Afonso, Maria Beatriz A.; Cruz, Thais R.; Silva, Yan F.; Pereira, Joao Clecio A.; Machado, Antonio E.H.; Goi, Beatriz E.; Lima-Neto, Benedito S.; Carvalho-Jr, Valdemiro P.; Journal of Organometallic Chemistry; vol. 851; (2017); p. 225 – 234;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.

PPh3)3RuCI2 (1 eq., 0.575 g, 0.6 mmol) and 1 ,1-bis-2-methylphenyl-prop-2-yn-1-ol (compound C, 1 .5 eq., 0.213 g, 0.9 mmol) were added in 4 ml HCI/dioxane solution (0.15 mol/l). The solution was heated to 90C for 3 hour, after which the solvent was removed under vacuum. Hexane (20 ml) was added to the flask and the solid was ultrasonically removed from the wall. The resulting suspension was filtered and washed two times using hexane (5 ml). The remaining solvent was evaporated affording a red-brown powder; 0.52 g (Yield: 95 %). The product was characterized by NMR spectra H and P. 1H NMR (300 MHz, CDCI3, TMS): delta 7.56 (dd, 1 1 H), 7.37 (t, 6 H), 7.21-7.31 (m, 13 H), 7.09 (tetra, 3 H), 6.95 (t, 3 H), 6.47 (t, 1 H), 6.14 (s, 1 H), 2.20 (s, 3 H), 1.66 (s, 3 H). 31 P NMR (121.49 MHz, CDCI3): delta 29.33.

15529-49-4, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,15529-49-4 ,Dichlorotris(triphenylphosphino)ruthenium (II), other downstream synthetic routes, hurry up and to see

Reference£º
Patent; GUANG MING INNOVATION COMPANY (WUHAN); W.C. VERPOORT, Francis; YU, Baoyi; WO2014/108071; (2014); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

Under argon dichlorotris(triphenylphosphine)ruthenium(II) (0.94 g, 0.99 mmol) is added to a solution of 2-(diphenylphosphino)-N-(2-(methylthio)benzyl)ethanamine (0.36 g, 0.99 mmol) in toluene (20 ml). After stirring for 19 h at 110 C. the reaction mixture is cooled to room temperature and evaporated under vacuo to a volume of 5 ml. To this suspension hexane (20 ml) is added. After stirring for 15 min the suspension is filtered and washed with hexane (4 ml) and diethyl ether (2¡Á4 ml). The light-brown filter cake is dried under vacuo for 19 h and then suspended in diethyl ether (5 ml). After stirring for 15 min the suspension is filtered, washed with diethyl ether (3¡Á1 ml) and the filter cake is dried u nder vacuo. Complex 9 is obtained as a light-brown solid (0.76 g, 96%). Analytical data: 1H-NMR (400 MHz, CDCl3): 7.80 (m, 6H), 7.69 (m, 1H), 7.47 (m, 3H), 7.31-7.01 (m, 17H), 6.88 (dt, J=2.02, 7.58, 1H), 7.18 (d, J=7.33, 1H), 5.48 (bs, 1H), 5.23 (d, J=12.63, 1H), 4.11 (m, 1H), 3.89 (m, 1H), 3.00 (m, 1H), 2.07 (m, 1H), 1.12 (m, 1H), 1.08 (s, 3H). 31P-NMR (500 MHz, CDCl3): 49.83 (d, J=27.74, 1P), 37.96 (d, J=27.74, 1P). Anal. calcd. for C40H39Cl2NP2RuS: C, 60.07%; H, 4.92%; N, 1.75%. Found: C, 60.36%; H, 4.79%; N, 1.47%.

The chemical industry reduces the impact on the environment during synthesis,15529-49-4,Dichlorotris(triphenylphosphino)ruthenium (II),I believe this compound will play a more active role in future production and life.

Reference£º
Patent; GIVAUDAN SA; GEISSER, Roger Wilhelm; OETIKER, Juerg Daniel; SCHROeDER, Fridtjof; (17 pag.)US2016/326199; (2016); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on Dichlorotris(triphenylphosphino)ruthenium (II)

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

c) Preparation of the Complex Dichloro bis[3-(Diphenylphosphino)-1-propylamine]Ruthenium; ([RuCl2(L-2)2]). Under argon, a round-bottomed Schlenck flask, equipped with a magnetic stirring bar, was charged with RuCl2(PPh3)3 (1.028 g, 1.07 mmol) and with a solution of 3-(diphenylphosphino)-1-propylamine (566.8 mg, 2.33 mmol) in toluene (5 mL). More toluene (5 mL) was added to rinse. Then the dark-brown solution was heated in an oil bath at 100 C. for 16 h. The resulting brick-orange suspension was cooled to room temperature, and added to pentane (50 mL) with stirring. The yellow solid was collected by filtration, washed with pentane (2¡Á3 mL) and dried in vacuo to provide the desired complex (672.6 mg, 1.02 mmol, 95%) as a yellow-mustard solid. 31P{1H}-NMR analysis showed the presence of two species. 1H-NMR (CD2Cl2): delta (A) 7.19 (t, J=7.2 Hz, 4H), 7.14 (m, 8H), 7.05 (t, J=7.2 Hz, 8H), 3.28 (brs, 4H), 3.02 (brs, 4H), 2.66 (m, 4H), 2.0 (m, 4H). 13C-NMR (CD2Cl2): delta (A) 138.4 (t, J=19.2 Hz, Carom), 134.2 (t, J=4.8 Hz, CHarom), 129.0 (CHarom), 127.5 (t, J=4.8 Hz, CHarom), 41.3 (CH2), 26.9 (t, J=13.6 Hz, CH2), 24.7 (CH2). 31P{1H}-NMR (CD2Cl2): A (82%) delta=33.5 ppm (s), B (18%) delta=49.8 ppm (s).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Patent; SAUDAN, Lionel; Dupau, Philippe; Riedhauser, Jean-Jacques; Wyss, Patrick; US2008/71121; (2008); A1;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Application of Copper(II) trifluoromethanesulfonate

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

15529-49-4, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4,the ruthenium-catalysts compound, it is a common compound, a new synthetic route is introduced below.

To a solution of ONS-LH (486mg, 2.0mmol) in THF (20mL) was added [Ru(PPh3)3Cl2] (868mg, 2.0mmol), which was then stirred under N2 for 15min. Triethylamine (Et3N) (202mg, 2.0mmol) was introduced, and the reaction mixture was stirred overnight at room temperature, during which the color of solution changed from brown to dark red brown. After removal of solvents in vacuo, CH2Cl2 (20mL) was added and the solution was filtered. The filtrate was concentrated and the residue was washed with Et2O (5mL¡Á2) and hexane (5mL¡Á2) to give the desired product. Recrystallization from MeOH/ Et2O (1:3) afforded dark red block crystals of 1¡¤0.5CH3OH¡¤2.75H2O suitable for X-ray diffraction in five days. Yield: 1.19g, 63% (based on Ru). IR (KBr disc, cm-1): 1597 (nuC=N), 1311 (nuC-O), 739 (nuC-S), 1432, 1087 and 691 (nuPPh3); 31P NMR (CDCl3, 162MHz): delta 16.4 (s, PPh3), 14.7 (s, PPh3) ppm. 1H NMR (CDCl3, 400MHz): delta 8.81 (s, 1H, CH=N), 7.98-7.31 (m, 4H, Ar-H), 7.23-7.06 (m, 4H, Ar-H), 6.75-7.01 (m, 30H, PPh3), 2.39 (s, 3H, SCH3) ppm. MS (FAB): m/z 903 [M+], 868 [M+-Cl], 641 [M+-PPh3], 379 [M+-2PPh3], 344 [Ru(ONS-L)]+. Anal. Calc. for C50H42NOP2ClSRu¡¤0.5(CH4O)¡¤2.75(H2O) (%): C, 64.74; H, 4.98; N, 1.48. Found: C, 64.67; H, 5.03; N, 1.43

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Dichlorotris(triphenylphosphino)ruthenium (II), 15529-49-4

Reference£º
Article; Wang, Chang-Jiu; Lin, Hui; Chen, Xin; Jia, Ai-Quan; Zhang, Qian-Feng; Inorganica Chimica Acta; vol. 467; (2017); p. 198 – 203;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

Some tips on 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

It is a common heterocyclic compound, the ruthenium-catalysts compound, Dichlorotris(triphenylphosphino)ruthenium (II), cas is 15529-49-4 its synthesis route is as follows.,15529-49-4

General procedure: The same basic method, as described here for [RuCl(PPh3)2(LMe,H)]Cl, was followed for all the complexes in this study. Asuspension of [RuCl2(PPh3)3] (0.36 g, 0.4 mmol) and LMe,H (0.15 g,0.4 mmol) in dry dichloromethane (15 cm3) was stirred for 3 h atroom temperature. This yielded an orange precipitate, which wascollected by filtration. Alternatively, the products 3-6 were solublein the reaction mixture, and were precipitated from it by careful addition of diethyl ether. In either case, the resultant solids werewashed repeatedly with diethyl ether to remove excess PPh3, thendried in vacuo.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Roberts, Thomas D.; Halcrow, Malcolm A.; Polyhedron; vol. 103; (2016); p. 79 – 86;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

A Schlenk flask was loaded with [Ru(PPh3)3(Cl)2] (1.2156 g,1.268 mmol) and 2,6-bis(2-benzimidazolyl)pyridine (4) (0.4088 g,1.313 mmol), to which was added 25 ml of anhydrous toluene. The mixture was stirred in an oil bath at 110 C, for two hours, during which time a red-brown precipitate had formed. The suspension was then stirred for 16 h at room temperature, after which time the solid was isolated via canula filtration and washed with 100 ml of anhydrous diethyl ether 3 times. The solid was dried under vacuum for 72 h. Isolated mass 1.07 g, 84% yield. NMR data – 1H NMR (d4-methanol, delta):8.53 (m, 2 H), 7.60 (t, J=8.0 Hz, 1 H), 7.40 (m, 8 H), 7.13 (m, 18H,PPh3), 6.88 (t, J=7.7 Hz, 12H, PPh3), NH signals not observed due to rapid H/D exchange with CD3OD. 13C{1H} NMR (d4-methanol, delta):152.7, 152.1, 144.1 and 135.7 (quaternary C), 134.4 (t, o-C of PPh3),133.3 (aromatic CeH), 132.4 (t, i-C of PPh3),130.4 (s, p-C of PPh3),128.8 (t, m-C of PPh3), 126.8, 124.5, 122.9, 122.1 and 113.6 (aromaticCeH). 31P{1H} NMR (d4-methanol, delta): 22.1 (s). Elemental analysis calculated (%) for C55H43Cl2N5P2Ru: C 65.54, H 4.30, N 6.95; found: C65.40, H 4.42, N 7.03. Product is soluble in methanol, poorly soluble in ethanol, but insoluble in acetone, acetonitrile and dichloromethane. A d4-MeOH NMR sample exposed to air was observed to form crystal safter 3 h. However, no decomposition signals were observed in the NMR spectrum. A sample of the solid exposed to air for 2 h and returned to the glove box was analysed by NMR; new unassigned signals appeared in both the 1H and 31P NMR spectra

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Braden, Drew J.; Cariou, Renan; Shabaker, John W.; Taylor, Russell A.; Applied Catalysis A: General; vol. 570; (2019); p. 367 – 375;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

under an inert atmosphere,0.48 g (PPh3)3RuCl2 (0.5 mmol) and 0.14 g of o-Ph2PC6H4NH2 (0.5 mmol) were weighed and placed in a Schlenk bottle (100 mL) containing about 40 mL of toluene, and heated to 70 C in a sealed state. After reacting overnight, the reaction solution was cooled to room temperature, collected by filtration, and the resulting precipitate was washed with n-hexane, dried under reduced pressure, and weighed 0.31 g (yield 87%) to give intermediate i[(PPh3)(o-Ph2PC6H4NH2) RuCl2]2

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Patent; Chizhou College; Fang Xiaolong; Wang Xin; Duan Ning; (17 pag.)CN110003283; (2019); A;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

New learning discoveries about 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

15529-49-4, Dichlorotris(triphenylphosphino)ruthenium (II) is a ruthenium-catalysts compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A Schlenk flask was loaded with [Ru(PPh3)3(Cl)2] (2.0270 g,2.114 mmol) and bis(3-aminopropyl)phenylphosphine (1) (0.4816 g,2.147 mmol), to which was added 17 ml of anhydrous toluene to generate a yellow suspension. The mixture was stirred in an oil bath at 110 C, for two hours. The yellow suspension was then stirred for 16 h at room temperature, after which time the solid was isolated via canula filtration and washed with 100 ml of anhydrous diethyl ether 3 times. The solid was dried under vacuum for 72 h. Isolated mass 1.20 g, 86% yield. NMR data – 1H NMR (CDCl3, delta): 7.71 (m with appearance of t,6 H) 7.43 (m with appearnce of t, 2 H), 7.14-6.94 (m, 10 H), 6.88 (mwith appearance of t, 2 H) 4.25, (br, 2H, NH), 3.39 (br, 2H, NH and CH),3.08 (br, 1H, CH), 2.23-1.81 (m, 10H, 9CH and NH), 0.68 (br, 1H, CH). 13C{1H} NMR (CDCl3, delta): 138.7 (d, i-C of PPh), 137.0 (d, i-C of PPh3),134.0 (d, o-C of PPh3), 131.2 (d, o-C of PPh), 128.4 (s, p-C of PPh3),128.2 (s, p-C of PPh), 127.7 (d, m-C of PPh), 127.5 (d, m-C of PPh3),42.3, 40.5, 33.3 (d, 1JPC=26.9 Hz), 27.9 (d, 1JPC=27.8 Hz), 26.1,25.4. 31P{1H} NMR (CDCl3, delta): 48.8 (d, 2JPP=34 Hz), 32.65 (d,2JPP=34 Hz). Elemental analysis calculated (%) for C30H36Cl2N2P2Ru:C 53.93, H 5.51, N 4.25; found: C 53.72, H 5.51, N 4.52 Product is soluble in dichloromethane and chloroform, but insoluble in methanol,ethanol, isopropanol and acetonitrile. The product is air sensitive in solution, turning green on exposure to air. A sample of the solid exposed to air for 2 h and returned to the glove box was analysed by NMR; no new unassigned signals were observed in either the 1H or 31P NMR spectra. Single crystals of [Ru(1)PPh3(Cl)2] were grown by layering hexane onto a DCM solution of the complex to enable slow diffusion of the solvents, 15529-49-4

15529-49-4 Dichlorotris(triphenylphosphino)ruthenium (II) 11007548, aruthenium-catalysts compound, is more and more widely used in various fields.

Reference£º
Article; Braden, Drew J.; Cariou, Renan; Shabaker, John W.; Taylor, Russell A.; Applied Catalysis A: General; vol. 570; (2019); p. 367 – 375;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI

The important role of 15529-49-4

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Name is Dichlorotris(triphenylphosphino)ruthenium (II), as a common heterocyclic compound, it belongs to ruthenium-catalysts compound, and cas is 15529-49-4, its synthesis route is as follows.,15529-49-4

N1-(2-aminoethyl)-1,2-ethanediamine (0.057 ml, 0.58 mmol) ligand was dissolved in 10 mL of dichloromethane and the solution was added dropwise to a stirred solution of [RuCl2(PPh3)3] (1) (0.500 g, 0.522 mmol) in 10 mL of dichloromethane. The reaction mixture was stirred approximately for 50 min at room temperature. The brown solution was filtered to remove the insoluble impurities. The solvent was reduced by a vacuum and the product was then precipitated by adding n-hexane. The yellow solid was filtered and washed three times with 20 mL of diethyl ether. Crystals suitable for X-ray structural analysis have been obtained by layer-diffusion of diethylether into dichloromethane solutions of the complex. Yield (0.342g, 82%). M.p is 239-241C. IR (KBr, nucm-1): 3330 (nuFree NH2), 3276 (nuNH2), 3227 (nuNH). 1H NMR (CD2Cl2, delta ppm): 2.48-4.21 (br, m, 13H, (H2NCH2CH2)2NH), 7.24-7.78 (m, 30H, C6H5). 31P{1H} NMR (CD2Cl2): delta (ppm) 44.00 and 43.94 (dd). FAB-MS: 799.2. Anal. Found: C, 60.22; H, 5.28; N, 5.14%. Calc. for C40H43Cl2N3P2Ru: C, 60.08; H, 5.42; N, 5.25.

With the complex challenges of chemical substances, we look forward to future research findings about Dichlorotris(triphenylphosphino)ruthenium (II)

Reference£º
Article; Al-Noaimi, Mousa; Nafady, Ayman; Warad, Ismail; Alshwafy, Rwaida; Husein, Ahmad; Talib, Wamidh H.; Hadda, Taibi Ben; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 122; (2014); p. 273 – 282;,
Highly efficient and robust molecular ruthenium catalysts for water oxidation
Catalysts | Special Issue : Ruthenium Catalysts – MDPI